1 resultado para Tremblay, Larry
em Collection Of Biostatistics Research Archive
Filtro por publicador
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (19)
- Aquatic Commons (32)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Bibloteca do Senado Federal do Brasil (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (26)
- Boston College Law School, Boston College (BC), United States (2)
- Boston University Digital Common (1)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (16)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (24)
- CORA - Cork Open Research Archive - University College Cork - Ireland (23)
- Cornell: DigitalCommons@ILR (1)
- Digital Commons - Montana Tech (2)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (4)
- DigitalCommons@The Texas Medical Center (12)
- DigitalCommons@University of Nebraska - Lincoln (15)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (15)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (2)
- Massachusetts Institute of Technology (5)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (278)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (28)
- Queensland University of Technology - ePrints Archive (72)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositorio Institucional de la Universidad Nacional Agraria (6)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (3)
- School of Medicine, Washington University, United States (3)
- Universidad del Rosario, Colombia (29)
- Université de Montréal (1)
- Université de Montréal, Canada (208)
- University of Connecticut - USA (1)
- University of Michigan (38)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
Resumo:
Various inference procedures for linear regression models with censored failure times have been studied extensively. Recent developments on efficient algorithms to implement these procedures enhance the practical usage of such models in survival analysis. In this article, we present robust inferences for certain covariate effects on the failure time in the presence of "nuisance" confounders under a semiparametric, partial linear regression setting. Specifically, the estimation procedures for the regression coefficients of interest are derived from a working linear model and are valid even when the function of the confounders in the model is not correctly specified. The new proposals are illustrated with two examples and their validity for cases with practical sample sizes is demonstrated via a simulation study.