3 resultados para Tooth resorption

em Collection Of Biostatistics Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teeth are brittle and highly susceptible to cracking. We propose that observations of such cracking can be used as a diagnostic tool for predicting bite force and inferring tooth function in living and fossil mammals. Laboratory tests on model tooth structures and extracted human teeth in simulated biting identify the principal fracture modes in enamel. Examination of museum specimens reveals the presence of similar fractures in a wide range of vertebrates, suggesting that cracks extended during ingestion or mastication. The use of ‘fracture mechanics’ from materials engineering provides elegant relations for quantifying critical bite forces in terms of characteristic tooth size and enamel thickness. The role of enamel microstructure in determining how cracks initiate and propagate within the enamel (and beyond) is discussed. The picture emerges of teeth as damage-tolerant structures, full of internal weaknesses and defects and yet able to contain the expansion of seemingly precarious cracks and fissures within the enamel shell. How the findings impact on dietary pressures forms an undercurrent of the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lucas and colleagues recently proposed a model based on fracture and deformation concepts to describe how mammalian tooth enamel may be adapted to the mechanical demands of diet (Lucas et al.: Bioessays 30[2008] 374-385). Here we review the applicability of that model by examining existing data on the food mechanical properties and enamel morphology of great apes (Pan, Pongo, and Gorilla). Particular attention is paid to whether the consumption of fallback foods is likely to play a key role in influencing great ape enamel morphology. Our results suggest that this is indeed the case. We also consider the implications of this conclusion on the evolution of the dentition of extinct hominins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study has been made of human and great ape molar tooth enamel. Nanoindentation techniques are used to map profiles of elastic modulus and hardness across sections from the enamel–dentin junction to the outer tooth surface. The measured data profiles overlap between species, suggesting a degree of commonality in material properties. Using established deformation and fracture relations, critical loads to produce function-threatening damage in the enamel of each species are calculated for characteristic tooth sizes and enamel thicknesses. The results suggest that differences in load-bearing capacity of molar teeth in primates are less a function of underlying material properties than of morphology.