1 resultado para The right of association
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (8)
- Archive of European Integration (224)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biodiversity Heritage Library, United States (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (85)
- Boston University Digital Common (1)
- Brock University, Canada (62)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (21)
- Center for Jewish History Digital Collections (4)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Cornell: DigitalCommons@ILR (1)
- Digital Archives@Colby (1)
- Digital Commons - Montana Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Howard @ Howard University | Howard University Research (1)
- Digital Peer Publishing (3)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (16)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (4)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (7)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (178)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (53)
- Queensland University of Technology - ePrints Archive (61)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (36)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (4)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (2)
- University of Michigan (29)
- University of Queensland eSpace - Australia (3)
- University of Washington (1)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Simulation-based assessment is a popular and frequently necessary approach to evaluation of statistical procedures. Sometimes overlooked is the ability to take advantage of underlying mathematical relations and we focus on this aspect. We show how to take advantage of large-sample theory when conducting a simulation using the analysis of genomic data as a motivating example. The approach uses convergence results to provide an approximation to smaller-sample results, results that are available only by simulation. We consider evaluating and comparing a variety of ranking-based methods for identifying the most highly associated SNPs in a genome-wide association study, derive integral equation representations of the pre-posterior distribution of percentiles produced by three ranking methods, and provide examples comparing performance. These results are of interest in their own right and set the framework for a more extensive set of comparisons.