2 resultados para Test Template Framework
em Collection Of Biostatistics Research Archive
Resumo:
The affected sib/relative pair (ASP/ARP) design is often used with covariates to find genes that can cause a disease in pathways other than through those covariates. However, such "covariates" can themselves have genetic determinants, and the validity of existing methods has so far only been argued under implicit assumptions. We propose an explicit causal formulation of the problem using potential outcomes and principal stratification. The general role of this formulation is to identify and separate the meaning of the different assumptions that can provide valid causal inference in linkage analysis. This separation helps to (a) develop better methods under explicit assumptions, and (b) show the different ways in which these assumptions can fail, which is necessary for developing further specific designs to test these assumptions and confirm or improve the inference. Using this formulation in the specific problem above, we show that, when the "covariate" (e.g., addiction to smoking) also has genetic determinants, then existing methods, including those previously thought as valid, can declare linkage between the disease and marker loci even when no such linkage exists. We also introduce design strategies to address the problem.
Resumo:
Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique which is commonly used to quantify changes in blood oxygenation and flow coupled to neuronal activation. One of the primary goals of fMRI studies is to identify localized brain regions where neuronal activation levels vary between groups. Single voxel t-tests have been commonly used to determine whether activation related to the protocol differs across groups. Due to the generally limited number of subjects within each study, accurate estimation of variance at each voxel is difficult. Thus, combining information across voxels in the statistical analysis of fMRI data is desirable in order to improve efficiency. Here we construct a hierarchical model and apply an Empirical Bayes framework on the analysis of group fMRI data, employing techniques used in high throughput genomic studies. The key idea is to shrink residual variances by combining information across voxels, and subsequently to construct an improved test statistic in lieu of the classical t-statistic. This hierarchical model results in a shrinkage of voxel-wise residual sample variances towards a common value. The shrunken estimator for voxelspecific variance components on the group analyses outperforms the classical residual error estimator in terms of mean squared error. Moreover, the shrunken test-statistic decreases false positive rate when testing differences in brain contrast maps across a wide range of simulation studies. This methodology was also applied to experimental data regarding a cognitive activation task.