1 resultado para Spatial design
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (5)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (6)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (18)
- CentAUR: Central Archive University of Reading - UK (15)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (3)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (14)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (19)
- Queensland University of Technology - ePrints Archive (742)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (20)
- Universidade Complutense de Madrid (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (1)
- Université Laval Mémoires et thèses électroniques (2)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (10)
- University of Washington (3)
- WestminsterResearch - UK (2)
Resumo:
This paper describes the use of model-based geostatistics for choosing the optimal set of sampling locations, collectively called the design, for a geostatistical analysis. Two types of design situations are considered. These are retrospective design, which concerns the addition of sampling locations to, or deletion of locations from, an existing design, and prospective design, which consists of choosing optimal positions for a new set of sampling locations. We propose a Bayesian design criterion which focuses on the goal of efficient spatial prediction whilst allowing for the fact that model parameter values are unknown. The results show that in this situation a wide range of inter-point distances should be included in the design, and the widely used regular design is therefore not the optimal choice.