2 resultados para Sources of Information
em Collection Of Biostatistics Research Archive
Resumo:
The last few years have seen the advent of high-throughput technologies to analyze various properties of the transcriptome and proteome of several organisms. The congruency of these different data sources, or lack thereof, can shed light on the mechanisms that govern cellular function. A central challenge for bioinformatics research is to develop a unified framework for combining the multiple sources of functional genomics information and testing associations between them, thus obtaining a robust and integrated view of the underlying biology. We present a graph theoretic approach to test the significance of the association between multiple disparate sources of functional genomics data by proposing two statistical tests, namely edge permutation and node label permutation tests. We demonstrate the use of the proposed tests by finding significant association between a Gene Ontology-derived "predictome" and data obtained from mRNA expression and phenotypic experiments for Saccharomyces cerevisiae. Moreover, we employ the graph theoretic framework to recast a surprising discrepancy presented in Giaever et al. (2002) between gene expression and knockout phenotype, using expression data from a different set of experiments.
Resumo:
We analyze three sets of doubly-censored cohort data on incubation times, estimating incubation distributions using semi-parametric methods and assessing the comparability of the estimates. Weibull models appear to be inappropriate for at least one of the cohorts, and the estimates for the different cohorts are substantially different. We use these estimates as inputs for backcalculation, using a nonparametric method based on maximum penalized likelihood. The different incubations all produce fits to the reported AIDS counts that are as good as the fit from a nonstationary incubation distribution that models treatment effects, but the estimated infection curves are very different. We also develop a method for estimating nonstationarity as part of the backcalculation procedure and find that such estimates also depend very heavily on the assumed incubation distribution. We conclude that incubation distributions are so uncertain that meaningful error bounds are difficult to place on backcalculated estimates and that backcalculation may be too unreliable to be used without being supplemented by other sources of information in HIV prevalence and incidence.