3 resultados para Soil diversity

em Collection Of Biostatistics Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clearcutting is a common harvesting practice in many eastern hardwood forests. Among the vegetation strata of these forests, the herbaceous layer is potentially the most sensitive in its response to harvest-mediated disturbances and has the highest species diversity. Thus, it is important to understand the response of herbaceous layer diversity to forest harvesting. Previous work on clearcut and mature stands at the Fernow Experimental Forest (FEF), West Virginia, has shown that, although, harvesting did not alter appreciably herbaceous layer cover, it influenced the relationship of cover to biotic and abiotic factors, such as tree density and soil nutrients, respectively. The purpose of this study was to examine the response of species diversity of the herbaceous layer to harvesting at FEF. Fifteen circular, 0.04 ha sample plots were established in each of four watersheds (60 plots in total) representing two stand age categories: two watersheds with 20 years even-age stands following clearcutting and two watersheds with mature second growth stands. All woody stems ≥2.5 cm diameter at breast height were identified, tallied, and measured for diameter. The herbaceous layer was sampled by identifying all vascular plants ≤1 m in height and estimating cover for each species in each of 10 (1 m2) circular sub-plots per sample plot (600 sub-plots total). Species diversity for each plot was calculated from herbaceous layer data using the ln-based Shannon Index (H′) equation. Ten stand and soil variables also were measured on each plot. Mean herbaceous layer cover for clearcut versus mature stands was 27.2±14.3% versus 20.2±8.1% (P>0.05), respectively and mean H′ was 1.67±0.42 versus 1.55±0.48 (P>0.05), respectively. Herbaceous layer diversity was negatively correlated with cation exchange capacity and extractable Ca and Mg in the mineral soil in clearcut stands. In contrast, herbaceous layer diversity was positively correlated with soil organic matter and clay content. Although, 20 years of recovery after clearcutting did not have significant effects on the species diversity of the herbaceous layer when examining stand age means alone, harvesting did appear to influence the spatial relationships between herbaceous layer diversity and biotic factors (e.g. tree density) and abiotic factors (e.g. soil nutrients).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent interest in spatial pattern in terrestrial ecosystems has come from an awareness of theintimate relationship between spatial heterogeneity of soil resources and maintenance of plant species diversity. Soil and vegetation can vary spatially inresponse to several state factors of the system. In this study, we examined fine-scale spatial variability of soil nutrients and vascular plant species in contrasting herb-dominated communities (a pasture and an oldfield) to determine degree of spatial dependenceamong soil variables and plant community characteristics within these communities by sampling at 1-m intervals. Each site was divided into 25 1-m 2 plots. Mineral soil was sampled (2-cm diameter, 5-cm depth) from each of four 0.25-m2 quarters and combined into a single composite sample per plot. Soil organic matter was measured as loss-on-ignition. Extractable NH4 and NO3 were determined before and after laboratory incubation to determine potential net N mineralization and nitrification. Cations were analyzed using inductively coupled plasma emission spectrometry. Vegetation was assessed using estimated percent cover. Most soiland plant variables exhibited sharp contrasts betweenpasture and old-field sites, with the old field having significantly higher net N mineralization/nitrification, pH, Ca, Mg, Al, plant cover, and species diversity, richness, and evenness. Multiple regressions revealedthat all plant variables (species diversity, richness,evenness, and cover) were significantly related to soil characteristics (available nitrogen, organic matter,moisture, pH, Ca, and Mg) in the pasture; in the old field only cover was significantly related to soil characteristics (organic matter and moisture). Both sites contrasted sharply with respect to spatial pattern of soil variables, with the old field exhibiting a higher degree of spatial dependence. These results demonstrate that land-use practices can exert profound influence on spatial heterogeneity of both soil properties and vegetation in herb-dominated communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response of plant biodiversity to increased availability of nitrogen (N) has been investigated in temperate and boreal forests, which are typically N-limited, but little is known in tropical forests. We examined the effects of artificial N additions on plant diversity (species richness, density and cover) of the understory layer in an N saturated old-growth tropical forest in southern China to test the following hypothesis: N additions decrease plant diversity in N saturated tropical forests primarily from N-mediated changes in soil properties. Experimental additions of N were administered at the following levels from July 2003 to July 2008: no addition (Control); 50 kg N ha−1 yr−1 (Low-N); 100 kg N ha−1 yr−1 (Medium-N), and 150 kg N ha−1 yr−1 (High-N). Results showed that no understory species exhibited positive growth response to any level of N addition during the study period. Although low-to-medium levels of N addition (≤100 kg N ha−1 yr−1) generally did not alter plant diversity through time, high levels of N addition significantly reduced species diversity. This decrease was most closely related to declines within tree seedling and fern functional groups, as well as to significant increases in soil acidity and Al mobility, and decreases in Ca availability and fine-root biomass. This mechanism for loss of biodiversity provides sharp contrast to competition-based mechanisms suggested in studies of understory communities in other forests. Our results suggest that high-N additions can decrease plant diversity in tropical forests, but that this response may vary with rate of N addition.