2 resultados para Single-gene

em Collection Of Biostatistics Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article gives an overview over the methods used in the low--level analysis of gene expression data generated using DNA microarrays. This type of experiment allows to determine relative levels of nucleic acid abundance in a set of tissues or cell populations for thousands of transcripts or loci simultaneously. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. This includes the design of probes, the experimental design, the image analysis of microarray scanned images, the normalization of fluorescence intensities, the assessment of the quality of microarray data and incorporation of quality information in subsequent analyses, the combination of information across arrays and across sets of experiments, the discovery and recognition of patterns in expression at the single gene and multiple gene levels, and the assessment of significance of these findings, considering the fact that there is a lot of noise and thus random features in the data. For all of these components, access to a flexible and efficient statistical computing environment is an essential aspect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding regulatory mechanisms in complex biological systems is an important challenge, in particular to understand disease mechanisms, and to discover new therapies and drugs. In this paper, we consider the important question of cellular regulation of phenotype. Using single gene deletion data, we address the problem of linking a phenotype to underlying functional roles in the organism and provide a sound computational and statistical paradigm that can be extended to address more complex experimental settings such as multiple deletions. We apply the proposed approaches to publicly available data sets to demonstrate strong evidence for the involvement of multi-protein complexes in the phenotypes studied.