1 resultado para Signals and signaling.
em Collection Of Biostatistics Research Archive
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (37)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (54)
- Boston University Digital Common (4)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (43)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (21)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (7)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (27)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (21)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (16)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (32)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (3)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (52)
- Nottingham eTheses (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (11)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (90)
- Queensland University of Technology - ePrints Archive (52)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (8)
- Repositório Institucional da Universidade de Brasília (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (84)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (2)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (31)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (16)
- Universidade Metodista de São Paulo (1)
- Universita di Parma (2)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (20)
- University of Michigan (15)
- University of Queensland eSpace - Australia (24)
- University of Washington (1)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In the simultaneous estimation of a large number of related quantities, multilevel models provide a formal mechanism for efficiently making use of the ensemble of information for deriving individual estimates. In this article we investigate the ability of the likelihood to identify the relationship between signal and noise in multilevel linear mixed models. Specifically, we consider the ability of the likelihood to diagnose conjugacy or independence between the signals and noises. Our work was motivated by the analysis of data from high-throughput experiments in genomics. The proposed model leads to a more flexible family. However, we further demonstrate that adequately capitalizing on the benefits of a well fitting fully-specified likelihood in the terms of gene ranking is difficult.