10 resultados para Semi-parametric estimation
em Collection Of Biostatistics Research Archive
Resumo:
In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP associated with short-term exposure to summer ozone. At the second stage, we specify a class of distributions for the true city-specific relative rates to estimate an overall effect by taking into account the variability within and across cities. We perform the calculations with respect to several random effects distributions (normal, t-student, and mixture of normal), thus relaxing the common assumption of a two-stage normal-normal hierarchical model. We assess the sensitivity of the results to: 1) lag structure for ozone exposure; 2) degree of adjustment for long-term trends; 3) inclusion of other pollutants in the model;4) heat waves; 5) random effects distributions; and 6) prior hyperparameters. On average across cities, we found that a 10ppb increase in summer ozone level for every day in the previous week is associated with 1.25 percent increase in CVDRESP mortality (95% posterior regions: 0.47, 2.03). The relative rate estimates are also positive and statistically significant at lags 0, 1, and 2. We found that associations between summer ozone and CVDRESP mortality are sensitive to the confounding adjustment for PM_10, but are robust to: 1) the adjustment for long-term trends, other gaseous pollutants (NO_2, SO_2, and CO); 2) the distributional assumptions at the second stage of the hierarchical model; and 3) the prior distributions on all unknown parameters. Bayesian hierarchical distributed lag models and their application to the NMMAPS data allow us estimation of an acute health effect associated with exposure to ambient air pollution in the last few days on average across several locations. The application of these methods and the systematic assessment of the sensitivity of findings to model assumptions provide important epidemiological evidence for future air quality regulations.
Resumo:
We analyze three sets of doubly-censored cohort data on incubation times, estimating incubation distributions using semi-parametric methods and assessing the comparability of the estimates. Weibull models appear to be inappropriate for at least one of the cohorts, and the estimates for the different cohorts are substantially different. We use these estimates as inputs for backcalculation, using a nonparametric method based on maximum penalized likelihood. The different incubations all produce fits to the reported AIDS counts that are as good as the fit from a nonstationary incubation distribution that models treatment effects, but the estimated infection curves are very different. We also develop a method for estimating nonstationarity as part of the backcalculation procedure and find that such estimates also depend very heavily on the assumed incubation distribution. We conclude that incubation distributions are so uncertain that meaningful error bounds are difficult to place on backcalculated estimates and that backcalculation may be too unreliable to be used without being supplemented by other sources of information in HIV prevalence and incidence.
Resumo:
In this paper, we focus on the model for two types of tumors. Tumor development can be described by four types of death rates and four tumor transition rates. We present a general semi-parametric model to estimate the tumor transition rates based on data from survival/sacrifice experiments. In the model, we make a proportional assumption of tumor transition rates on a common parametric function but no assumption of the death rates from any states. We derived the likelihood function of the data observed in such an experiment, and an EM algorithm that simplified estimating procedures. This article extends work on semi-parametric models for one type of tumor (see Portier and Dinse and Dinse) to two types of tumors.
Resumo:
Time series models relating short-term changes in air pollution levels to daily mortality counts typically assume that the effects of air pollution on the log relative rate of mortality do not vary with time. However, these short-term effects might plausibly vary by season. Changes in the sources of air pollution and meteorology can result in changes in characteristics of the air pollution mixture across seasons. The authors develop Bayesian semi-parametric hierarchical models for estimating time-varying effects of pollution on mortality in multi-site time series studies. The methods are applied to the updated National Morbidity and Mortality Air Pollution Study database for the period 1987--2000, which includes data for 100 U.S. cities. At the national level, a 10 micro-gram/m3 increase in PM(10) at lag 1 is associated with a 0.15 (95% posterior interval: -0.08, 0.39),0.14 (-0.14, 0.42), 0.36 (0.11, 0.61), and 0.14 (-0.06, 0.34) percent increase in mortality for winter, spring, summer, and fall, respectively. An analysis by geographical regions finds a strong seasonal pattern in the northeast (with a peak in summer) and little seasonal variation in the southern regions of the country. These results provide useful information for understanding particle toxicity and guiding future analyses of particle constituent data.
Resumo:
In many applications the observed data can be viewed as a censored high dimensional full data random variable X. By the curve of dimensionality it is typically not possible to construct estimators that are asymptotically efficient at every probability distribution in a semiparametric censored data model of such a high dimensional censored data structure. We provide a general method for construction of one-step estimators that are efficient at a chosen submodel of the full-data model, are still well behaved off this submodel and can be chosen to always improve on a given initial estimator. These one-step estimators rely on good estimators of the censoring mechanism and thus will require a parametric or semiparametric model for the censoring mechanism. We present a general theorem that provides a template for proving the desired asymptotic results. We illustrate the general one-step estimation methods by constructing locally efficient one-step estimators of marginal distributions and regression parameters with right-censored data, current status data and bivariate right-censored data, in all models allowing the presence of time-dependent covariates. The conditions of the asymptotics theorem are rigorously verified in one of the examples and the key condition of the general theorem is verified for all examples.
Resumo:
This paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal/clustered data, conditional logistic regression for matched case-control studies, multivariate measurement error models, generalized linear mixed models with a semiparametric component, and many others. We propose profile-kernel and backfitting estimation methods for these problems, derive their asymptotic distributions, and show that in likelihood problems the methods are semiparametric efficient. While generally not true, with our methods profiling and backfitting are asymptotically equivalent. We also consider pseudolikelihood methods where some nuisance parameters are estimated from a different algorithm. The proposed methods are evaluated using simulation studies and applied to the Kenya hemoglobin data.
Resumo:
In recent years, researchers in the health and social sciences have become increasingly interested in mediation analysis. Specifically, upon establishing a non-null total effect of an exposure, investigators routinely wish to make inferences about the direct (indirect) pathway of the effect of the exposure not through (through) a mediator variable that occurs subsequently to the exposure and prior to the outcome. Natural direct and indirect effects are of particular interest as they generally combine to produce the total effect of the exposure and therefore provide insight on the mechanism by which it operates to produce the outcome. A semiparametric theory has recently been proposed to make inferences about marginal mean natural direct and indirect effects in observational studies (Tchetgen Tchetgen and Shpitser, 2011), which delivers multiply robust locally efficient estimators of the marginal direct and indirect effects, and thus generalizes previous results for total effects to the mediation setting. In this paper we extend the new theory to handle a setting in which a parametric model for the natural direct (indirect) effect within levels of pre-exposure variables is specified and the model for the observed data likelihood is otherwise unrestricted. We show that estimation is generally not feasible in this model because of the curse of dimensionality associated with the required estimation of auxiliary conditional densities or expectations, given high-dimensional covariates. We thus consider multiply robust estimation and propose a more general model which assumes a subset but not all of several working models holds.