1 resultado para SYSTEMS BIOLOGY
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (12)
- Abertay Research Collections - Abertay University’s repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Applied Math and Science Education Repository - Washington - USA (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (283)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (26)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (18)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (13)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (13)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Glasgow Theses Service (5)
- Instituto Gulbenkian de Ciência (3)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (7)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (10)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (13)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (47)
- Université de Montréal (1)
- Université de Montréal, Canada (8)
- University of Michigan (5)
- University of Queensland eSpace - Australia (312)
- University of Washington (1)
Resumo:
Understanding regulatory mechanisms in complex biological systems is an important challenge, in particular to understand disease mechanisms, and to discover new therapies and drugs. In this paper, we consider the important question of cellular regulation of phenotype. Using single gene deletion data, we address the problem of linking a phenotype to underlying functional roles in the organism and provide a sound computational and statistical paradigm that can be extended to address more complex experimental settings such as multiple deletions. We apply the proposed approaches to publicly available data sets to demonstrate strong evidence for the involvement of multi-protein complexes in the phenotypes studied.