5 resultados para SPATIAL VARIABILITY
em Collection Of Biostatistics Research Archive
Resumo:
Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of Nsaturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturatedsoils from FEF, and how these effects varied between high N-processing vs. low N-processingsoils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O2 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest ratesof net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin,and N. Subsamples of mineral soil were extractedimmediately with 1 N KCl and analyzed for NH4+and NO3– to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence ofnitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and30°C), followed by 1 N KCl extraction and analysis for NH4+ and NO3–. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubation sat all temperatures supported earlier observations based on field incubations. At 30°C, rates from N- t reated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibitingno net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca:Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer.
Resumo:
We studied temporal and spatial patterns of soil nitrogen (N) dynamics from 1993 to 1995 in three watersheds of Fernow Experimental Forest, W.V.: WS7 (24-year-old, untreated); WS4 (mature, untreated); and WS3 (24-year-old, treated with (NH4)2SO since 1989 at the rate of 35 kg Nha–1year–1). Net nitrification was 141, 114, and115 kg Nha–1year–1, for WS3, WS4, and WS7, respectively, essentially 100% of net N mineralization for all watersheds. Temporal (seasonal) patterns of nitrification were significantly related to soil moisture and ambient temperaturein untreated watersheds only. Spatial patterns of soil water NO3–of WS4 suggest that microenvironmental variabilitylimits rates of N processing in some areas of this N-saturated watershed, in part by ericaceous species in the herbaceous layer. Spatial patterns of soil water NO3–in treated WS3 suggest that later stages of N saturation may result inhigher concentrations with less spatial variability. Spatial variability in soil N variables was lower in treated WS3 versus untreated watersheds. Nitrogen additions have altered the response of N-processing microbes to environmental factors, becoming less sensitive to seasonal changes in soil moisture and temperature. Biotic processes responsible forregulating N dynamics may be compromised in N-saturated forest ecosystems.
Resumo:
Recent interest in spatial pattern in terrestrial ecosystems has come from an awareness of theintimate relationship between spatial heterogeneity of soil resources and maintenance of plant species diversity. Soil and vegetation can vary spatially inresponse to several state factors of the system. In this study, we examined fine-scale spatial variability of soil nutrients and vascular plant species in contrasting herb-dominated communities (a pasture and an oldfield) to determine degree of spatial dependenceamong soil variables and plant community characteristics within these communities by sampling at 1-m intervals. Each site was divided into 25 1-m 2 plots. Mineral soil was sampled (2-cm diameter, 5-cm depth) from each of four 0.25-m2 quarters and combined into a single composite sample per plot. Soil organic matter was measured as loss-on-ignition. Extractable NH4 and NO3 were determined before and after laboratory incubation to determine potential net N mineralization and nitrification. Cations were analyzed using inductively coupled plasma emission spectrometry. Vegetation was assessed using estimated percent cover. Most soiland plant variables exhibited sharp contrasts betweenpasture and old-field sites, with the old field having significantly higher net N mineralization/nitrification, pH, Ca, Mg, Al, plant cover, and species diversity, richness, and evenness. Multiple regressions revealedthat all plant variables (species diversity, richness,evenness, and cover) were significantly related to soil characteristics (available nitrogen, organic matter,moisture, pH, Ca, and Mg) in the pasture; in the old field only cover was significantly related to soil characteristics (organic matter and moisture). Both sites contrasted sharply with respect to spatial pattern of soil variables, with the old field exhibiting a higher degree of spatial dependence. These results demonstrate that land-use practices can exert profound influence on spatial heterogeneity of both soil properties and vegetation in herb-dominated communities.
Resumo:
Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately
Resumo:
Recent research highlights the promise of remotely-sensed aerosol optical depth (AOD) as a proxy for ground-level PM2.5. Particular interest lies in the information on spatial heterogeneity potentially provided by AOD, with important application to estimating and monitoring pollution exposure for public health purposes. Given the temporal and spatio-temporal correlations reported between AOD and PM2.5 , it is tempting to interpret the spatial patterns in AOD as reflecting patterns in PM2.5 . Here we find only limited spatial associations of AOD from three satellite retrievals with PM2.5 over the eastern U.S. at the daily and yearly levels in 2004. We then use statistical modeling to show that the patterns in monthly average AOD poorly reflect patterns in PM2.5 because of systematic, spatially-correlated error in AOD as a proxy for PM2.5 . Furthermore, when we include AOD as a predictor of monthly PM2.5 in a statistical prediction model, AOD provides little additional information to improve predictions of PM2.5 when included in a model that already accounts for land use, emission sources, meteorology and regional variability. These results suggest caution in using spatial variation in AOD to stand in for spatial variation in ground-level PM2.5 in epidemiological analyses and indicate that when PM2.5 monitoring is available, careful statistical modeling outperforms the use of AOD.