2 resultados para Remotely-sensed Data
em Collection Of Biostatistics Research Archive
Resumo:
Recent research highlights the promise of remotely-sensed aerosol optical depth (AOD) as a proxy for ground-level PM2.5. Particular interest lies in the information on spatial heterogeneity potentially provided by AOD, with important application to estimating and monitoring pollution exposure for public health purposes. Given the temporal and spatio-temporal correlations reported between AOD and PM2.5 , it is tempting to interpret the spatial patterns in AOD as reflecting patterns in PM2.5 . Here we find only limited spatial associations of AOD from three satellite retrievals with PM2.5 over the eastern U.S. at the daily and yearly levels in 2004. We then use statistical modeling to show that the patterns in monthly average AOD poorly reflect patterns in PM2.5 because of systematic, spatially-correlated error in AOD as a proxy for PM2.5 . Furthermore, when we include AOD as a predictor of monthly PM2.5 in a statistical prediction model, AOD provides little additional information to improve predictions of PM2.5 when included in a model that already accounts for land use, emission sources, meteorology and regional variability. These results suggest caution in using spatial variation in AOD to stand in for spatial variation in ground-level PM2.5 in epidemiological analyses and indicate that when PM2.5 monitoring is available, careful statistical modeling outperforms the use of AOD.
Resumo:
The stashR package (a Set of Tools for Administering SHared Repositories) for R implements a simple key-value style database where character string keys are associated with data values. The key-value databases can be either stored locally on the user's computer or accessed remotely via the Internet. Methods specific to the stashR package allow users to share data repositories or access previously created remote data repositories. In particular, methods are available for the S4 classes localDB and remoteDB to insert, retrieve, or delete data from the database as well as to synchronize local copies of the data to the remote version of the database. Users efficiently access information from a remote database by retrieving only the data files indexed by user-specified keys and caching this data in a local copy of the remote database. The local and remote counterparts of the stashR package offer the potential to enhance reproducible research by allowing users of Sweave to cache their R computations for a research paper in a localDB database. This database can then be stored on the Internet as a remoteDB database. When readers of the research paper wish to reproduce the computations involved in creating a specific figure or calculating a specific numeric value, they can access the remoteDB database and obtain the R objects involved in the computation.