3 resultados para Ratio of normal random variables

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiological studies. In this paper, we propose a new class of semiparametric normal transformation models for right censored spatially correlated survival data. This class of models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, and their joint distribution is obtained by transforming survival outcomes to normal random variables, whose joint distribution is assumed to be multivariate normal with a spatial correlation structure. A key feature of the class of semiparametric normal transformation models is that it provides a rich class of spatial survival models where regression coefficients have population average interpretation and the spatial dependence of survival times is conveniently modeled using the transformed variables by flexible normal random fields. We study the relationship of the spatial correlation structure of the transformed normal variables and the dependence measures of the original survival times. Direct nonparametric maximum likelihood estimation in such models is practically prohibited due to the high dimensional intractable integration of the likelihood function and the infinite dimensional nuisance baseline hazard parameter. We hence develop a class of spatial semiparametric estimating equations, which conveniently estimate the population-level regression coefficients and the dependence parameters simultaneously. We study the asymptotic properties of the proposed estimators, and show that they are consistent and asymptotically normal. The proposed method is illustrated with an analysis of data from the East Boston Ashma Study and its performance is evaluated using simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A marker that is strongly associated with outcome (or disease) is often assumed to be effective for classifying individuals according to their current or future outcome. However, for this to be true, the associated odds ratio must be of a magnitude rarely seen in epidemiological studies. An illustration of the relationship between odds ratios and receiver operating characteristic (ROC) curves shows, for example, that a marker with an odds ratio as high as 3 is in fact a very poor classification tool. If a marker identifies 10 percent of controls as positive (false positives) and has an odds ratio of 3, then it will only correctly identify 25 percent of cases as positive (true positives). Moreover, the authors illustrate that a single measure of association such as an odds ratio does not meaningfully describe a marker’s ability to classify subjects. Appropriate statistical methods for assessing and reporting the classification power of a marker are described. The serious pitfalls of using more traditional methods based on parameters in logistic regression models are illustrated.