7 resultados para Quinn’s competing values.
em Collection Of Biostatistics Research Archive
Resumo:
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Since mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left truncated and right censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. Firstly, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.
Resumo:
Suppose that we are interested in establishing simple, but reliable rules for predicting future t-year survivors via censored regression models. In this article, we present inference procedures for evaluating such binary classification rules based on various prediction precision measures quantified by the overall misclassification rate, sensitivity and specificity, and positive and negative predictive values. Specifically, under various working models we derive consistent estimators for the above measures via substitution and cross validation estimation procedures. Furthermore, we provide large sample approximations to the distributions of these nonsmooth estimators without assuming that the working model is correctly specified. Confidence intervals, for example, for the difference of the precision measures between two competing rules can then be constructed. All the proposals are illustrated with two real examples and their finite sample properties are evaluated via a simulation study.
Resumo:
When comparing a new treatment with a control in a randomized clinical study, the treatment effect is generally assessed by evaluating a summary measure over a specific study population. The success of the trial heavily depends on the choice of such a population. In this paper, we show a systematic, effective way to identify a promising population, for which the new treatment is expected to have a desired benefit, using the data from a current study involving similar comparator treatments. Specifically, with the existing data we first create a parametric scoring system using multiple covariates to estimate subject-specific treatment differences. Using this system, we specify a desired level of treatment difference and create a subgroup of patients, defined as those whose estimated scores exceed this threshold. An empirically calibrated group-specific treatment difference curve across a range of threshold values is constructed. The population of patients with any desired level of treatment benefit can then be identified accordingly. To avoid any ``self-serving'' bias, we utilize a cross-training-evaluation method for implementing the above two-step procedure. Lastly, we show how to select the best scoring system among all competing models. The proposals are illustrated with the data from two clinical trials in treating AIDS and cardiovascular diseases. Note that if we are not interested in designing a new study for comparing similar treatments, the new procedure can also be quite useful for the management of future patients who would receive nontrivial benefits to compensate for the risk or cost of the new treatment.