1 resultado para Quantitative Genetic-variation
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (24)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (57)
- Brock University, Canada (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (3)
- CentAUR: Central Archive University of Reading - UK (45)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (72)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (3)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (20)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (26)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (28)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (26)
- Indian Institute of Science - Bangalore - Índia (3)
- Infoteca EMBRAPA (1)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Nacional de Saúde de Portugal (3)
- National Center for Biotechnology Information - NCBI (11)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (91)
- Queensland University of Technology - ePrints Archive (100)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (188)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (6)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (25)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (32)
- University of Washington (1)
Resumo:
Marginal generalized linear models can be used for clustered and longitudinal data by fitting a model as if the data were independent and using an empirical estimator of parameter standard errors. We extend this approach to data where the number of observations correlated with a given one grows with sample size and show that parameter estimates are consistent and asymptotically Normal with a slower convergence rate than for independent data, and that an information sandwich variance estimator is consistent. We present two problems that motivated this work, the modelling of patterns of HIV genetic variation and the behavior of clustered data estimators when clusters are large.