1 resultado para Probability and Statistics
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Applied Math and Science Education Repository - Washington - USA (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (28)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (13)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (17)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- Dalarna University College Electronic Archive (10)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (1)
- Greenwich Academic Literature Archive - UK (5)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (136)
- Indian Institute of Science - Bangalore - Índia (9)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (45)
- Queensland University of Technology - ePrints Archive (25)
- Repositorio Académico de la Universidad Nacional de Costa Rica (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (15)
- Repositorio Institucional Universidad de Medellín (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- Universidad del Rosario, Colombia (15)
- Universidad Politécnica de Madrid (9)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Michigan (496)
- University of Queensland eSpace - Australia (8)
- University of Southampton, United Kingdom (16)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The concordance probability is used to evaluate the discriminatory power and the predictive accuracy of nonlinear statistical models. We derive an analytic expression for the concordance probability in the Cox proportional hazards model. The proposed estimator is a function of the regression parameters and the covariate distribution only and does not use the observed event and censoring times. For this reason it is asymptotically unbiased, unlike Harrell's c-index based on informative pairs. The asymptotic distribution of the concordance probability estimate is derived using U-statistic theory and the methodology is applied to a predictive model in lung cancer.