5 resultados para Parametric model

em Collection Of Biostatistics Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we focus on the model for two types of tumors. Tumor development can be described by four types of death rates and four tumor transition rates. We present a general semi-parametric model to estimate the tumor transition rates based on data from survival/sacrifice experiments. In the model, we make a proportional assumption of tumor transition rates on a common parametric function but no assumption of the death rates from any states. We derived the likelihood function of the data observed in such an experiment, and an EM algorithm that simplified estimating procedures. This article extends work on semi-parametric models for one type of tumor (see Portier and Dinse and Dinse) to two types of tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, researchers in the health and social sciences have become increasingly interested in mediation analysis. Specifically, upon establishing a non-null total effect of an exposure, investigators routinely wish to make inferences about the direct (indirect) pathway of the effect of the exposure not through (through) a mediator variable that occurs subsequently to the exposure and prior to the outcome. Natural direct and indirect effects are of particular interest as they generally combine to produce the total effect of the exposure and therefore provide insight on the mechanism by which it operates to produce the outcome. A semiparametric theory has recently been proposed to make inferences about marginal mean natural direct and indirect effects in observational studies (Tchetgen Tchetgen and Shpitser, 2011), which delivers multiply robust locally efficient estimators of the marginal direct and indirect effects, and thus generalizes previous results for total effects to the mediation setting. In this paper we extend the new theory to handle a setting in which a parametric model for the natural direct (indirect) effect within levels of pre-exposure variables is specified and the model for the observed data likelihood is otherwise unrestricted. We show that estimation is generally not feasible in this model because of the curse of dimensionality associated with the required estimation of auxiliary conditional densities or expectations, given high-dimensional covariates. We thus consider multiply robust estimation and propose a more general model which assumes a subset but not all of several working models holds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed modesl and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions or the resulting "rotated" residuals are used to construct an empirical cumulative distribution function (ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as a computationally efficient parametric bootstrap for generating representatives of the stochastic limit of the ECDF. Through functionals, such representatives are used to construct global tests for the hypothesis of normal margional errors. In addition, we demonstrate that the ECDF of the predicted random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our approach. Thus, our method supports both omnibus and directed tests. Our method works well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider inference in randomized studies, in which repeatedly measured outcomes may be informatively missing due to drop out. In this setting, it is well known that full data estimands are not identified unless unverified assumptions are imposed. We assume a non-future dependence model for the drop-out mechanism and posit an exponential tilt model that links non-identifiable and identifiable distributions. This model is indexed by non-identified parameters, which are assumed to have an informative prior distribution, elicited from subject-matter experts. Under this model, full data estimands are shown to be expressed as functionals of the distribution of the observed data. To avoid the curse of dimensionality, we model the distribution of the observed data using a Bayesian shrinkage model. In a simulation study, we compare our approach to a fully parametric and a fully saturated model for the distribution of the observed data. Our methodology is motivated and applied to data from the Breast Cancer Prevention Trial.