1 resultado para PARTITIONS
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (7)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (21)
- Helda - Digital Repository of University of Helsinki (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (20)
- Instituto Politécnico do Porto, Portugal (4)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (13)
- Queensland University of Technology - ePrints Archive (13)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (28)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (24)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (15)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (12)
- University of Queensland eSpace - Australia (7)
- University of Southampton, United Kingdom (2)
Resumo:
Many seemingly disparate approaches for marginal modeling have been developed in recent years. We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the proposed copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts.