3 resultados para Omitted variables

em Collection Of Biostatistics Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a matched experimental design, the effectiveness of matching in reducing bias and increasing power depends on the strength of the association between the matching variable and the outcome of interest. In particular, in the design of a community health intervention trial, the effectiveness of a matched design, where communities are matched according to some community characteristic, depends on the strength of the correlation between the matching characteristic and the change in the health behavior being measured. We attempt to estimate the correlation between community characteristics and changes in health behaviors in four datasets from community intervention trials and observational studies. Community characteristics that are highly correlated with changes in health behaviors would potentially be effective matching variables in studies of health intervention programs designed to change those behaviors. Among the community characteristics considered, the urban-rural character of the community was the most highly correlated with changes in health behaviors. The correlations between Per Capita Income, Percent Low Income & Percent aged over 65 and changes in health behaviors were marginally statistically significant (p < 0.08).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose robust and e±cient tests and estimators for gene-environment/gene-drug interactions in family-based association studies. The methodology is designed for studies in which haplotypes, quantitative pheno- types and complex exposure/treatment variables are analyzed. Using causal inference methodology, we derive family-based association tests and estimators for the genetic main effects and the interactions. The tests and estimators are robust against population admixture and strati¯cation without requiring adjustment for confounding variables. We illustrate the practical relevance of our approach by an application to a COPD study. The data analysis suggests a gene-environment interaction between a SNP in the Serpine gene and smok- ing status/pack years of smoking that reduces the FEV1 volume by about 0.02 liter per pack year of smoking. Simulation studies show that the pro- posed methodology is su±ciently powered for realistic sample sizes and that it provides valid tests and effect size estimators in the presence of admixture and stratification.