6 resultados para Number of Successful Calls

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a Bayesian method for estimating the number of essential genes in a genome, on the basis of data on viable mutants for which a single transposon was inserted after a random TA site in a genome,potentially disrupting a gene. The prior distribution for the number of essential genes was taken to be uniform. A Gibbs sampler was used to estimate the posterior distribution. The method is illustrated with simulated data. Further simulations were used to study the performance of the procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimation of the number of mixture components (k) is an unsolved problem. Available methods for estimation of k include bootstrapping the likelihood ratio test statistics and optimizing a variety of validity functionals such as AIC, BIC/MDL, and ICOMP. We investigate the minimization of distance between fitted mixture model and the true density as a method for estimating k. The distances considered are Kullback-Leibler (KL) and “L sub 2”. We estimate these distances using cross validation. A reliable estimate of k is obtained by voting of B estimates of k corresponding to B cross validation estimates of distance. This estimation methods with KL distance is very similar to Monte Carlo cross validated likelihood methods discussed by Smyth (2000). With focus on univariate normal mixtures, we present simulation studies that compare the cross validated distance method with AIC, BIC/MDL, and ICOMP. We also apply the cross validation estimate of distance approach along with AIC, BIC/MDL and ICOMP approach, to data from an osteoporosis drug trial in order to find groups that differentially respond to treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulation-based assessment is a popular and frequently necessary approach to evaluation of statistical procedures. Sometimes overlooked is the ability to take advantage of underlying mathematical relations and we focus on this aspect. We show how to take advantage of large-sample theory when conducting a simulation using the analysis of genomic data as a motivating example. The approach uses convergence results to provide an approximation to smaller-sample results, results that are available only by simulation. We consider evaluating and comparing a variety of ranking-based methods for identifying the most highly associated SNPs in a genome-wide association study, derive integral equation representations of the pre-posterior distribution of percentiles produced by three ranking methods, and provide examples comparing performance. These results are of interest in their own right and set the framework for a more extensive set of comparisons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most microarray technologies, a number of critical steps are required to convert raw intensity measurements into the data relied upon by data analysts, biologists and clinicians. These data manipulations, referred to as preprocessing, can influence the quality of the ultimate measurements. In the last few years, the high-throughput measurement of gene expression is the most popular application of microarray technology. For this application, various groups have demonstrated that the use of modern statistical methodology can substantially improve accuracy and precision of gene expression measurements, relative to ad-hoc procedures introduced by designers and manufacturers of the technology. Currently, other applications of microarrays are becoming more and more popular. In this paper we describe a preprocessing methodology for a technology designed for the identification of DNA sequence variants in specific genes or regions of the human genome that are associated with phenotypes of interest such as disease. In particular we describe methodology useful for preprocessing Affymetrix SNP chips and obtaining genotype calls with the preprocessed data. We demonstrate how our procedure improves existing approaches using data from three relatively large studies including one in which large number independent calls are available. Software implementing these ideas are avialble from the Bioconductor oligo package.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity have been associated with diseases processes. High-throughput single nucleotide polymorphism (SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls. Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov models (HMM) may be useful for improving genotype calls and copy number estimates that do not incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM framework for inference in high throughput SNP arrays by integrating copy number, genotype calls, and the corresponding confidence scores when available. Using simulated data, we demonstrate how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP array data is available in the R package ICE.