1 resultado para Nonsmooth Calculus
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (18)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Applied Math and Science Education Repository - Washington - USA (170)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Boston University Digital Common (14)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (24)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (19)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (34)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (14)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (17)
- Instituto Politécnico do Porto, Portugal (62)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (12)
- Ministerio de Cultura, Spain (1)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (14)
- Queensland University of Technology - ePrints Archive (57)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (9)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (170)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universitat de Girona, Spain (14)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (2)
- University of Michigan (57)
- University of Queensland eSpace - Australia (10)
- University of Southampton, United Kingdom (75)
Resumo:
Suppose that we are interested in establishing simple, but reliable rules for predicting future t-year survivors via censored regression models. In this article, we present inference procedures for evaluating such binary classification rules based on various prediction precision measures quantified by the overall misclassification rate, sensitivity and specificity, and positive and negative predictive values. Specifically, under various working models we derive consistent estimators for the above measures via substitution and cross validation estimation procedures. Furthermore, we provide large sample approximations to the distributions of these nonsmooth estimators without assuming that the working model is correctly specified. Confidence intervals, for example, for the difference of the precision measures between two competing rules can then be constructed. All the proposals are illustrated with two real examples and their finite sample properties are evaluated via a simulation study.