3 resultados para Medical Negligence and Failure to Warn
em Collection Of Biostatistics Research Archive
Resumo:
In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.
Resumo:
Jewell and Kalbfleisch (1992) consider the use of marker processes for applications related to estimation of the survival distribution of time to failure. Marker processes were assumed to be stochastic processes that, at a given point in time, provide information about the current hazard and consequently on the remaining time to failure. Particular attention was paid to calculations based on a simple additive model for the relationship between the hazard function at time t and the history of the marker process up until time t. Specific applications to the analysis of AIDS data included the use of markers as surrogate responses for onset of AIDS with censored data and as predictors of the time elapsed since infection in prevalent individuals. Here we review recent work on the use of marker data to tackle these kinds of problems with AIDS data. The Poisson marker process with an additive model, introduced in Jewell and Kalbfleisch (1992) may be a useful "test" example for comparison of various procedures.
Resumo:
A recent article in this journal (Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2: e124) argued that more than half of published research findings in the medical literature are false. In this commentary, we examine the structure of that argument, and show that it has three basic components: 1)An assumption that the prior probability of most hypotheses explored in medical research is below 50%. 2)Dichotomization of P-values at the 0.05 level and introduction of a “bias” factor (produced by significance-seeking), the combination of which severely weakens the evidence provided by every design. 3)Use of Bayes theorem to show that, in the face of weak evidence, hypotheses with low prior probabilities cannot have posterior probabilities over 50%. Thus, the claim is based on a priori assumptions that most tested hypotheses are likely to be false, and then the inferential model used makes it impossible for evidence from any study to overcome this handicap. We focus largely on step (2), explaining how the combination of dichotomization and “bias” dilutes experimental evidence, and showing how this dilution leads inevitably to the stated conclusion. We also demonstrate a fallacy in another important component of the argument –that papers in “hot” fields are more likely to produce false findings. We agree with the paper’s conclusions and recommendations that many medical research findings are less definitive than readers suspect, that P-values are widely misinterpreted, that bias of various forms is widespread, that multiple approaches are needed to prevent the literature from being systematically biased and the need for more data on the prevalence of false claims. But calculating the unreliability of the medical research literature, in whole or in part, requires more empirical evidence and different inferential models than were used. The claim that “most research findings are false for most research designs and for most fields” must be considered as yet unproven.