2 resultados para Medawar, Peter B
em Collection Of Biostatistics Research Archive
Resumo:
It is of interest in some applications to determine whether there is a relationship between a hazard rate function (or a cumulative incidence function) and a mark variable which is only observed at uncensored failure times. We develop nonparametric tests for this problem when the mark variable is continuous. Tests are developed for the null hypothesis that the mark-specific hazard rate is independent of the mark versus ordered and two-sided alternatives expressed in terms of mark-specific hazard functions and mark-specific cumulative incidence functions. The test statistics are based on functionals of a bivariate test process equal to a weighted average of differences between a Nelson--Aalen-type estimator of the mark-specific cumulative hazard function and a nonparametric estimator of this function under the null hypothesis. The weight function in the test process can be chosen so that the test statistics are asymptotically distribution-free.Asymptotically correct critical values are obtained through a simple simulation procedure. The testing procedures are shown to perform well in numerical studies, and are illustrated with an AIDS clinical trial example. Specifically, the tests are used to assess if the instantaneous or absolute risk of treatment failure depends on the amount of accumulation of drug resistance mutations in a subject's HIV virus. This assessment helps guide development of anti-HIV therapies that surmount the problem of drug resistance.
Resumo:
Vaccines with limited ability to prevent HIV infection may positively impact the HIV/AIDS pandemic by preventing secondary transmission and disease in vaccine recipients who become infected. To evaluate the impact of vaccination on secondary transmission and disease, efficacy trials assess vaccine effects on HIV viral load and other surrogate endpoints measured after infection. A standard test that compares the distribution of viral load between the infected subgroups of vaccine and placebo recipients does not assess a causal effect of vaccine, because the comparison groups are selected after randomization. To address this problem, we formulate clinically relevant causal estimands using the principal stratification framework developed by Frangakis and Rubin (2002), and propose a class of logistic selection bias models whose members identify the estimands. Given a selection model in the class, procedures are developed for testing and estimation of the causal effect of vaccination on viral load in the principal stratum of subjects who would be infected regardless of randomization assignment. We show how the procedures can be used for a sensitivity analysis that quantifies how the causal effect of vaccination varies with the presumed magnitude of selection bias.