3 resultados para Maximum entropy statistical estimate
em Collection Of Biostatistics Research Archive
Resumo:
Smoothing splines are a popular approach for non-parametric regression problems. We use periodic smoothing splines to fit a periodic signal plus noise model to data for which we assume there are underlying circadian patterns. In the smoothing spline methodology, choosing an appropriate smoothness parameter is an important step in practice. In this paper, we draw a connection between smoothing splines and REACT estimators that provides motivation for the creation of criteria for choosing the smoothness parameter. The new criteria are compared to three existing methods, namely cross-validation, generalized cross-validation, and generalization of maximum likelihood criteria, by a Monte Carlo simulation and by an application to the study of circadian patterns. For most of the situations presented in the simulations, including the practical example, the new criteria out-perform the three existing criteria.
Resumo:
There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiological studies. In this paper, we propose a new class of semiparametric normal transformation models for right censored spatially correlated survival data. This class of models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, and their joint distribution is obtained by transforming survival outcomes to normal random variables, whose joint distribution is assumed to be multivariate normal with a spatial correlation structure. A key feature of the class of semiparametric normal transformation models is that it provides a rich class of spatial survival models where regression coefficients have population average interpretation and the spatial dependence of survival times is conveniently modeled using the transformed variables by flexible normal random fields. We study the relationship of the spatial correlation structure of the transformed normal variables and the dependence measures of the original survival times. Direct nonparametric maximum likelihood estimation in such models is practically prohibited due to the high dimensional intractable integration of the likelihood function and the infinite dimensional nuisance baseline hazard parameter. We hence develop a class of spatial semiparametric estimating equations, which conveniently estimate the population-level regression coefficients and the dependence parameters simultaneously. We study the asymptotic properties of the proposed estimators, and show that they are consistent and asymptotically normal. The proposed method is illustrated with an analysis of data from the East Boston Ashma Study and its performance is evaluated using simulations.