3 resultados para Markov random fields (MRFs)

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiological studies. In this paper, we propose a new class of semiparametric normal transformation models for right censored spatially correlated survival data. This class of models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, and their joint distribution is obtained by transforming survival outcomes to normal random variables, whose joint distribution is assumed to be multivariate normal with a spatial correlation structure. A key feature of the class of semiparametric normal transformation models is that it provides a rich class of spatial survival models where regression coefficients have population average interpretation and the spatial dependence of survival times is conveniently modeled using the transformed variables by flexible normal random fields. We study the relationship of the spatial correlation structure of the transformed normal variables and the dependence measures of the original survival times. Direct nonparametric maximum likelihood estimation in such models is practically prohibited due to the high dimensional intractable integration of the likelihood function and the infinite dimensional nuisance baseline hazard parameter. We hence develop a class of spatial semiparametric estimating equations, which conveniently estimate the population-level regression coefficients and the dependence parameters simultaneously. We study the asymptotic properties of the proposed estimators, and show that they are consistent and asymptotically normal. The proposed method is illustrated with an analysis of data from the East Boston Ashma Study and its performance is evaluated using simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized linear mixed models (GLMM) are generalized linear models with normally distributed random effects in the linear predictor. Penalized quasi-likelihood (PQL), an approximate method of inference in GLMMs, involves repeated fitting of linear mixed models with “working” dependent variables and iterative weights that depend on parameter estimates from the previous cycle of iteration. The generality of PQL, and its implementation in commercially available software, has encouraged the application of GLMMs in many scientific fields. Caution is needed, however, since PQL may sometimes yield badly biased estimates of variance components, especially with binary outcomes. Recent developments in numerical integration, including adaptive Gaussian quadrature, higher order Laplace expansions, stochastic integration and Markov chain Monte Carlo (MCMC) algorithms, provide attractive alternatives to PQL for approximate likelihood inference in GLMMs. Analyses of some well known datasets, and simulations based on these analyses, suggest that PQL still performs remarkably well in comparison with more elaborate procedures in many practical situations. Adaptive Gaussian quadrature is a viable alternative for nested designs where the numerical integration is limited to a small number of dimensions. Higher order Laplace approximations hold the promise of accurate inference more generally. MCMC is likely the method of choice for the most complex problems that involve high dimensional integrals.