6 resultados para Marginal structural model
em Collection Of Biostatistics Research Archive
Resumo:
Intensive care unit (ICU) patients are ell known to be highly susceptible for nosocomial (i.e. hospital-acquired) infections due to their poor health and many invasive therapeutic treatments. The effects of acquiring such infections in ICU on mortality are however ill understood. Our goal is to quantify these effects using data from the National Surveillance Study of Nosocomial Infections in Intensive Care Units (Belgium). This is a challenging problem because of the presence of time-dependent confounders (such as exposure to mechanical ventilation)which lie on the causal path from infection to mortality. Standard statistical analyses may be severely misleading in such settings and have shown contradicting results. While inverse probability weighting for marginal structural models can be used to accommodate time-dependent confounders, inference for the effect of ?ICU acquired infections on mortality under such models is further complicated (a) by the fact that marginal structural models infer the effect of acquiring infection on a given, fixed day ?in ICU?, which is not well defined when ICU discharge comes prior to that day; (b) by informative censoring of the survival time due to hospital discharge; and (c) by the instability of the inverse weighting estimation procedure. We accommodate these problems by developing inference under a new class of marginal structural models which describe the hazard of death for patients if, possibly contrary to fact, they stayed in the ICU for at least a given number of days s and acquired infection or not on that day. Using these models we estimate that, if patients stayed in the ICU for at least s days, the effect of acquiring infection on day s would be to multiply the subsequent hazard of death by 2.74 (95 per cent conservative CI 1.48; 5.09).
Resumo:
Suppose that having established a marginal total effect of a point exposure on a time-to-event outcome, an investigator wishes to decompose this effect into its direct and indirect pathways, also know as natural direct and indirect effects, mediated by a variable known to occur after the exposure and prior to the outcome. This paper proposes a theory of estimation of natural direct and indirect effects in two important semiparametric models for a failure time outcome. The underlying survival model for the marginal total effect and thus for the direct and indirect effects, can either be a marginal structural Cox proportional hazards model, or a marginal structural additive hazards model. The proposed theory delivers new estimators for mediation analysis in each of these models, with appealing robustness properties. Specifically, in order to guarantee ignorability with respect to the exposure and mediator variables, the approach, which is multiply robust, allows the investigator to use several flexible working models to adjust for confounding by a large number of pre-exposure variables. Multiple robustness is appealing because it only requires a subset of working models to be correct for consistency; furthermore, the analyst need not know which subset of working models is in fact correct to report valid inferences. Finally, a novel semiparametric sensitivity analysis technique is developed for each of these models, to assess the impact on inference, of a violation of the assumption of ignorability of the mediator.
Resumo:
The purpose of this study is to develop statistical methodology to facilitate indirect estimation of the concentration of antiretroviral drugs and viral loads in the prostate gland and the seminal vesicle. The differences in antiretroviral drug concentrations in these organs may lead to suboptimal concentrations in one gland compared to the other. Suboptimal levels of the antiretroviral drugs will not be able to fully suppress the virus in that gland, lead to a source of sexually transmissible virus and increase the chance of selecting for drug resistant virus. This information may be useful selecting antiretroviral drug regimen that will achieve optimal concentrations in most of male genital tract glands. Using fractionally collected semen ejaculates, Lundquist (1949) measured levels of surrogate markers in each fraction that are uniquely produced by specific male accessory glands. To determine the original glandular concentrations of the surrogate markers, Lundquist solved a simultaneous series of linear equations. This method has several limitations. In particular, it does not yield a unique solution, it does not address measurement error, and it disregards inter-subject variability in the parameters. To cope with these limitations, we developed a mechanistic latent variable model based on the physiology of the male genital tract and surrogate markers. We employ a Bayesian approach and perform a sensitivity analysis with regard to the distributional assumptions on the random effects and priors. The model and Bayesian approach is validated on experimental data where the concentration of a drug should be (biologically) differentially distributed between the two glands. In this example, the Bayesian model-based conclusions are found to be robust to model specification and this hierarchical approach leads to more scientifically valid conclusions than the original methodology. In particular, unlike existing methods, the proposed model based approach was not affected by a common form of outliers.
Resumo:
Clustered data analysis is characterized by the need to describe both systematic variation in a mean model and cluster-dependent random variation in an association model. Marginalized multilevel models embrace the robustness and interpretations of a marginal mean model, while retaining the likelihood inference capabilities and flexible dependence structures of a conditional association model. Although there has been increasing recognition of the attractiveness of marginalized multilevel models, there has been a gap in their practical application arising from a lack of readily available estimation procedures. We extend the marginalized multilevel model to allow for nonlinear functions in both the mean and association aspects. We then formulate marginal models through conditional specifications to facilitate estimation with mixed model computational solutions already in place. We illustrate this approach on a cerebrovascular deficiency crossover trial.