1 resultado para Map updating
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Campus - Alm@DL - Università di Bologna (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (21)
- Biodiversity Heritage Library, United States (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (66)
- Brock University, Canada (91)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CentAUR: Central Archive University of Reading - UK (41)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (19)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Digital Archives@Colby (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (5)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (68)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Harvard University (71)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (111)
- Massachusetts Institute of Technology (25)
- Ministerio de Cultura, Spain (5)
- National Center for Biotechnology Information - NCBI (33)
- Publishing Network for Geoscientific & Environmental Data (76)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (66)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- School of Medicine, Washington University, United States (4)
- Scielo Saúde Pública - SP (13)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (15)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (31)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (1)
- University of Michigan (34)
- University of Queensland eSpace - Australia (21)
- University of Southampton, United Kingdom (2)
Resumo:
We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold.