2 resultados para Magnitude of the soul

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A marker that is strongly associated with outcome (or disease) is often assumed to be effective for classifying individuals according to their current or future outcome. However, for this to be true, the associated odds ratio must be of a magnitude rarely seen in epidemiological studies. An illustration of the relationship between odds ratios and receiver operating characteristic (ROC) curves shows, for example, that a marker with an odds ratio as high as 3 is in fact a very poor classification tool. If a marker identifies 10 percent of controls as positive (false positives) and has an odds ratio of 3, then it will only correctly identify 25 percent of cases as positive (true positives). Moreover, the authors illustrate that a single measure of association such as an odds ratio does not meaningfully describe a marker’s ability to classify subjects. Appropriate statistical methods for assessing and reporting the classification power of a marker are described. The serious pitfalls of using more traditional methods based on parameters in logistic regression models are illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In environmental epidemiology, exposure X and health outcome Y vary in space and time. We present a method to diagnose the possible influence of unmeasured confounders U on the estimated effect of X on Y and to propose several approaches to robust estimation. The idea is to use space and time as proxy measures for the unmeasured factors U. We start with the time series case where X and Y are continuous variables at equally-spaced times and assume a linear model. We define matching estimator b(u)s that correspond to pairs of observations with specific lag u. Controlling for a smooth function of time, St, using a kernel estimator is roughly equivalent to estimating the association with a linear combination of the b(u)s with weights that involve two components: the assumptions about the smoothness of St and the normalized variogram of the X process. When an unmeasured confounder U exists, but the model otherwise correctly controls for measured confounders, the excess variation in b(u)s is evidence of confounding by U. We use the plot of b(u)s versus lag u, lagged-estimator-plot (LEP), to diagnose the influence of U on the effect of X on Y. We use appropriate linear combination of b(u)s or extrapolate to b(0) to obtain novel estimators that are more robust to the influence of smooth U. The methods are extended to time series log-linear models and to spatial analyses. The LEP plot gives us a direct view of the magnitude of the estimators for each lag u and provides evidence when models did not adequately describe the data.