5 resultados para MULTILOCUS GENOTYPE DATA

em Collection Of Biostatistics Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important aspect of the QTL mapping problem is the treatment of missing genotype data. If complete genotype data were available, QTL mapping would reduce to the problem of model selection in linear regression. However, in the consideration of loci in the intervals between the available genetic markers, genotype data is inherently missing. Even at the typed genetic markers, genotype data is seldom complete, as a result of failures in the genotyping assays or for the sake of economy (for example, in the case of selective genotyping, where only individuals with extreme phenotypes are genotyped). We discuss the use of algorithms developed for hidden Markov models (HMMs) to deal with the missing genotype data problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statistical approaches to evaluate higher order SNP-SNP and SNP-environment interactions are critical in genetic association studies, as susceptibility to complex disease is likely to be related to the interaction of multiple SNPs and environmental factors. Logic regression (Kooperberg et al., 2001; Ruczinski et al., 2003) is one such approach, where interactions between SNPs and environmental variables are assessed in a regression framework, and interactions become part of the model search space. In this manuscript we extend the logic regression methodology, originally developed for cohort and case-control studies, for studies of trios with affected probands. Trio logic regression accounts for the linkage disequilibrium (LD) structure in the genotype data, and accommodates missing genotypes via haplotype-based imputation. We also derive an efficient algorithm to simulate case-parent trios where genetic risk is determined via epistatic interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In most microarray technologies, a number of critical steps are required to convert raw intensity measurements into the data relied upon by data analysts, biologists and clinicians. These data manipulations, referred to as preprocessing, can influence the quality of the ultimate measurements. In the last few years, the high-throughput measurement of gene expression is the most popular application of microarray technology. For this application, various groups have demonstrated that the use of modern statistical methodology can substantially improve accuracy and precision of gene expression measurements, relative to ad-hoc procedures introduced by designers and manufacturers of the technology. Currently, other applications of microarrays are becoming more and more popular. In this paper we describe a preprocessing methodology for a technology designed for the identification of DNA sequence variants in specific genes or regions of the human genome that are associated with phenotypes of interest such as disease. In particular we describe methodology useful for preprocessing Affymetrix SNP chips and obtaining genotype calls with the preprocessed data. We demonstrate how our procedure improves existing approaches using data from three relatively large studies including one in which large number independent calls are available. Software implementing these ideas are avialble from the Bioconductor oligo package.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) are used to discover genes underlying complex, heritable disorders for which less powerful study designs have failed in the past. The number of GWAS has skyrocketed recently with findings reported in top journals and the mainstream media. Mircorarrays are the genotype calling technology of choice in GWAS as they permit exploration of more than a million single nucleotide polymorphisms (SNPs)simultaneously. The starting point for the statistical analyses used by GWAS, to determine association between loci and disease, are genotype calls (AA, AB, or BB). However, the raw data, microarray probe intensities, are heavily processed before arriving at these calls. Various sophisticated statistical procedures have been proposed for transforming raw data into genotype calls. We find that variability in microarray output quality across different SNPs, different arrays, and different sample batches has substantial inuence on the accuracy of genotype calls made by existing algorithms. Failure to account for these sources of variability, GWAS run the risk of adversely affecting the quality of reported findings. In this paper we present solutions based on a multi-level mixed model. Software implementation of the method described in this paper is available as free and open source code in the crlmm R/BioConductor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity have been associated with diseases processes. High-throughput single nucleotide polymorphism (SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls. Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov models (HMM) may be useful for improving genotype calls and copy number estimates that do not incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM framework for inference in high throughput SNP arrays by integrating copy number, genotype calls, and the corresponding confidence scores when available. Using simulated data, we demonstrate how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP array data is available in the R package ICE.