5 resultados para MAXIMUM LIKELIHOOD ESTIMATOR

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the interplay of smoothness and monotonicity assumptions when estimating a density from a sample of observations. The nonparametric maximum likelihood estimator of a decreasing density on the positive half line attains a rate of convergence at a fixed point if the density has a negative derivative. The same rate is obtained by a kernel estimator, but the limit distributions are different. If the density is both differentiable and known to be monotone, then a third estimator is obtained by isotonization of a kernel estimator. We show that this again attains the rate of convergence and compare the limit distributors of the three types of estimators. It is shown that both isotonization and smoothing lead to a more concentrated limit distribution and we study the dependence on the proportionality constant in the bandwidth. We also show that isotonization does not change the limit behavior of a kernel estimator with a larger bandwidth, in the case that the density is known to have more than one derivative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A large number of proposals for estimating the bivariate survival function under random censoring has been made. In this paper we discuss nonparametric maximum likelihood estimation and the bivariate Kaplan-Meier estimator of Dabrowska. We show how these estimators are computed, present their intuitive background and compare their practical performance under different levels of dependence and censoring, based on extensive simulation results, which leads to a practical advise.