1 resultado para Learning Models
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (33)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (19)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (131)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (12)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (9)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (26)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (7)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (3)
- Ecology and Society (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (10)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (11)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Open University Netherlands (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (7)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (16)
- Repositório da Produção Científica e Intelectual da Unicamp (13)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (7)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- Scielo Saúde Pública - SP (7)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (24)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (5)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (30)
- Université de Montréal (2)
- Université de Montréal, Canada (8)
- Université Laval Mémoires et thèses électroniques (2)
- University of Canberra Research Repository - Australia (2)
- University of Queensland eSpace - Australia (277)
- University of Southampton, United Kingdom (3)
- University of Washington (11)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
Medical errors originating in health care facilities are a significant source of preventable morbidity, mortality, and healthcare costs. Voluntary error report systems that collect information on the causes and contributing factors of medi- cal errors regardless of the resulting harm may be useful for developing effective harm prevention strategies. Some patient safety experts question the utility of data from errors that did not lead to harm to the patient, also called near misses. A near miss (a.k.a. close call) is an unplanned event that did not result in injury to the patient. Only a fortunate break in the chain of events prevented injury. We use data from a large voluntary reporting system of 836,174 medication errors from 1999 to 2005 to provide evidence that the causes and contributing factors of errors that result in harm are similar to the causes and contributing factors of near misses. We develop Bayesian hierarchical models for estimating the log odds of selecting a given cause (or contributing factor) of error given harm has occurred and the log odds of selecting the same cause given that harm did not occur. The posterior distribution of the correlation between these two vectors of log-odds is used as a measure of the evidence supporting the use of data from near misses and their causes and contributing factors to prevent medical errors. In addition, we identify the causes and contributing factors that have the highest or lowest log-odds ratio of harm versus no harm. These causes and contributing factors should also be a focus in the design of prevention strategies. This paper provides important evidence on the utility of data from near misses, which constitute the vast majority of errors in our data.