2 resultados para Jernström Offset

em Collection Of Biostatistics Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To examine effects of primary care physicians (PCPs) and patients on the association between charges for primary care and specialty care in a point-of-service (POS) health plan. Data Source. Claims from 1996 for 3,308 adult male POS plan members, each of whom was assigned to one of the 50 family practitioner-PCPs with the largest POS plan member-loads. Study Design. A hierarchical multivariate two-part model was fitted using a Gibbs sampler to estimate PCPs' effects on patients' annual charges for two types of services, primary care and specialty care, the associations among PCPs' effects, and within-patient associations between charges for the two services. Adjusted Clinical Groups (ACGs) were used to adjust for case-mix. Principal Findings. PCPs with higher case-mix adjusted rates of specialist use were less likely to see their patients at least once during the year (estimated correlation: –.40; 95% CI: –.71, –.008) and provided fewer services to patients that they saw (estimated correlation: –.53; 95% CI: –.77, –.21). Ten of 11 PCPs whose case-mix adjusted effects on primary care charges were significantly less than or greater than zero (p < .05) had estimated, case-mix adjusted effects on specialty care charges that were of opposite sign (but not significantly different than zero). After adjustment for ACG and PCP effects, the within-patient, estimated odds ratio for any use of primary care given any use of specialty care was .57 (95% CI: .45, .73). Conclusions. PCPs and patients contributed independently to a trade-off between utilization of primary care and specialty care. The trade-off appeared to partially offset significant differences in the amount of care provided by PCPs. These findings were possible because we employed a hierarchical multivariate model rather than separate univariate models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes Poisson log-linear multilevel models to investigate population variability in sleep state transition rates. We specifically propose a Bayesian Poisson regression model that is more flexible, scalable to larger studies, and easily fit than other attempts in the literature. We further use hierarchical random effects to account for pairings of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias is of epidemiologic importance. We estimate essentially non-parametric piecewise constant hazards and smooth them, and allow for time varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming piecewise constant hazards. This relationship allows us to synthesize two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed.