1 resultado para Iteration
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (34)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Boston University Digital Common (4)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (35)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (34)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- Duke University (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (56)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (3)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (12)
- Queensland University of Technology - ePrints Archive (52)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (29)
- Royal College of Art Research Repository - Uninet Kingdom (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (6)
- Universidad Politécnica de Madrid (26)
- Universidade Complutense de Madrid (1)
- Universidade de Madeira (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universidade Metodista de São Paulo (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Montréal (3)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (6)
- University of Southampton, United Kingdom (3)
- University of Washington (2)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Generalized linear mixed models (GLMM) are generalized linear models with normally distributed random effects in the linear predictor. Penalized quasi-likelihood (PQL), an approximate method of inference in GLMMs, involves repeated fitting of linear mixed models with “working” dependent variables and iterative weights that depend on parameter estimates from the previous cycle of iteration. The generality of PQL, and its implementation in commercially available software, has encouraged the application of GLMMs in many scientific fields. Caution is needed, however, since PQL may sometimes yield badly biased estimates of variance components, especially with binary outcomes. Recent developments in numerical integration, including adaptive Gaussian quadrature, higher order Laplace expansions, stochastic integration and Markov chain Monte Carlo (MCMC) algorithms, provide attractive alternatives to PQL for approximate likelihood inference in GLMMs. Analyses of some well known datasets, and simulations based on these analyses, suggest that PQL still performs remarkably well in comparison with more elaborate procedures in many practical situations. Adaptive Gaussian quadrature is a viable alternative for nested designs where the numerical integration is limited to a small number of dimensions. Higher order Laplace approximations hold the promise of accurate inference more generally. MCMC is likely the method of choice for the most complex problems that involve high dimensional integrals.