14 resultados para Interval sampling

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild (1999) under two-phase sampling designs. We show that the maximum likelihood estimators for both the parametric and nonparametric parts of the model are asymptotically normal and efficient. The efficient influence function for the parametric part aggress with the more general information bound calculations of Robins, Hsieh, and Newey (1995). By verifying the conditions of Murphy and Van der Vaart (2000) for a least favorable parametric submodel, we provide asymptotic justification for statistical inference based on profile likelihood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In biostatistical applications interest often focuses on the estimation of the distribution of a time-until-event variable T. If one observes whether or not T exceeds an observed monitoring time at a random number of monitoring times, then the data structure is called interval censored data. We extend this data structure by allowing the presence of a possibly time-dependent covariate process that is observed until end of follow up. If one only assumes that the censoring mechanism satisfies coarsening at random, then, by the curve of dimensionality, typically no regular estimators will exist. To fight the curse of dimensionality we follow the approach of Robins and Rotnitzky (1992) by modeling parameters of the censoring mechanism. We model the right-censoring mechanism by modeling the hazard of the follow up time, conditional on T and the covariate process. For the monitoring mechanism we avoid modeling the joint distribution of the monitoring times by only modeling a univariate hazard of the pooled monitoring times, conditional on the follow up time, T, and the covariates process, which can be estimated by treating the pooled sample of monitoring times as i.i.d. In particular, it is assumed that the monitoring times and the right-censoring times only depend on T through the observed covariate process. We introduce inverse probability of censoring weighted (IPCW) estimator of the distribution of T and of smooth functionals thereof which are guaranteed to be consistent and asymptotically normal if we have available correctly specified semiparametric models for the two hazards of the censoring process. Furthermore, given such correctly specified models for these hazards of the censoring process, we propose a one-step estimator which will improve on the IPCW estimator if we correctly specify a lower-dimensional working model for the conditional distribution of T, given the covariate process, that remains consistent and asymptotically normal if this latter working model is misspecified. It is shown that the one-step estimator is efficient if each subject is at most monitored once and the working model contains the truth. In general, it is shown that the one-step estimator optimally uses the surrogate information if the working model contains the truth. It is not optimal in using the interval information provided by the current status indicators at the monitoring times, but simulations in Peterson, van der Laan (1997) show that the efficiency loss is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose methods for smooth hazard estimation of a time variable where that variable is interval censored. These methods allow one to model the transformed hazard in terms of either smooth (smoothing splines) or linear functions of time and other relevant time varying predictor variables. We illustrate the use of this method on a dataset of hemophiliacs where the outcome, time to seroconversion for HIV, is interval censored and left-truncated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the NPMLE in the one-dimensional line segment problem is defined and studied, where line segments on the real line through two non-overlapping intervals are observed. The self-consistency equations for the NPMLE are defined and a quick algorithm for solving them is provided. Supnorm weak convergence to a Gaussian process and efficiency of the NPMLE is proved. The problem has a strong geological application in the study of the lifespan of species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is given for proving efficiency of NPMLE directly linked to empirical process theory. The conditions in general are appropriate consistency of the NPMLE, differentiability of the model, differentiability of the parameter of interest, local convexity of the parameter space, and a Donsker class condition for the class of efficient influence functions obtained by varying the parameters. For the case that the model is linear in the parameter and the parameter space is convex, as with most nonparametric missing data models, we show that the method leads to an identity for the NPMLE which almost says that the NPMLE is efficient and provides us straightforwardly with a consistency and efficiency proof. This identify is extended to an almost linear class of models which contain biased sampling models. To illustrate, the method is applied to the univariate censoring model, random truncation models, interval censoring case I model, the class of parametric models and to a class of semiparametric models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geostatistics involves the fitting of spatially continuous models to spatially discrete data (Chil`es and Delfiner, 1999). Preferential sampling arises when the process that determines the data-locations and the process being modelled are stochastically dependent. Conventional geostatistical methods assume, if only implicitly, that sampling is non-preferential. However, these methods are often used in situations where sampling is likely to be preferential. For example, in mineral exploration samples may be concentrated in areas thought likely to yield high-grade ore. We give a general expression for the likelihood function of preferentially sampled geostatistical data and describe how this can be evaluated approximately using Monte Carlo methods. We present a model for preferential sampling, and demonstrate through simulated examples that ignoring preferential sampling can lead to seriously misleading inferences. We describe an application of the model to a set of bio-monitoring data from Galicia, northern Spain, in which making allowance for preferential sampling materially changes the inferences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Markov chain Monte Carlo is a method of producing a correlated sample in order to estimate features of a complicated target distribution via simple ergodic averages. A fundamental question in MCMC applications is when should the sampling stop? That is, when are the ergodic averages good estimates of the desired quantities? We consider a method that stops the MCMC sampling the first time the width of a confidence interval based on the ergodic averages is less than a user-specified value. Hence calculating Monte Carlo standard errors is a critical step in assessing the output of the simulation. In particular, we consider the regenerative simulation and batch means methods of estimating the variance of the asymptotic normal distribution. We describe sufficient conditions for the strong consistency and asymptotic normality of both methods and investigate their finite sample properties in a variety of examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals are drawn from a population. On these individuals, information is obtained on treatment, outcome, and a few low-dimensional confounders. These individuals are then stratified according to these factors. In the second phase, a random sub-sample of individuals are drawn from each stratum, with known, stratum-specific selection probabilities. On these individuals, a rich set of confounding factors are collected. In this setting, we introduce four estimators: (1) simple inverse weighted, (2) locally efficient, (3) doubly robust and (4)enriched inverse weighted. We evaluate the finite-sample performance of these estimators in a simulation study. We also use our methodology to estimate the causal effect of trauma care on in-hospital mortality using data from the National Study of Cost and Outcomes of Trauma.