1 resultado para Information dispersal algorithm
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (101)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Bulgarian Digital Mathematics Library at IMI-BAS (35)
- CentAUR: Central Archive University of Reading - UK (13)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (14)
- Claremont University Consortium, United States (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (46)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (6)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (13)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Georgian Library Association, Georgia (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (109)
- Martin Luther Universitat Halle Wittenberg, Germany (12)
- Nottingham eTheses (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (49)
- Repositório da Produção Científica e Intelectual da Unicamp (11)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (13)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (110)
- Scielo Saúde Pública - SP (29)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (11)
- Universidad de Alicante (12)
- Universidad Politécnica de Madrid (17)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (25)
- Universidade dos Açores - Portugal (5)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (39)
- University of Queensland eSpace - Australia (160)
- University of Washington (2)
Resumo:
This paper presents a fully Bayesian approach that simultaneously combines basic event and statistically independent higher event-level failure data in fault tree quantification. Such higher-level data could correspond to train, sub-system or system failure events. The full Bayesian approach also allows the highest-level data that are usually available for existing facilities to be automatically propagated to lower levels. A simple example illustrates the proposed approach. The optimal allocation of resources for collecting additional data from a choice of different level events is also presented. The optimization is achieved using a genetic algorithm.