1 resultado para Information Model
em Collection Of Biostatistics Research Archive
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (2)
- Aberystwyth University Repository - Reino Unido (8)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (10)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (8)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (54)
- CentAUR: Central Archive University of Reading - UK (18)
- Center for Jewish History Digital Collections (2)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (20)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (14)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (10)
- Helda - Digital Repository of University of Helsinki (15)
- Indian Institute of Science - Bangalore - Índia (71)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (9)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (61)
- Queensland University of Technology - ePrints Archive (474)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- SAPIENTIA - Universidade do Algarve - Portugal (10)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (12)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (15)
- University of Connecticut - USA (3)
- University of Michigan (4)
- University of Queensland eSpace - Australia (6)
- University of Washington (1)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
In linear mixed models, model selection frequently includes the selection of random effects. Two versions of the Akaike information criterion (AIC) have been used, based either on the marginal or on the conditional distribution. We show that the marginal AIC is no longer an asymptotically unbiased estimator of the Akaike information, and in fact favours smaller models without random effects. For the conditional AIC, we show that ignoring estimation uncertainty in the random effects covariance matrix, as is common practice, induces a bias that leads to the selection of any random effect not predicted to be exactly zero. We derive an analytic representation of a corrected version of the conditional AIC, which avoids the high computational cost and imprecision of available numerical approximations. An implementation in an R package is provided. All theoretical results are illustrated in simulation studies, and their impact in practice is investigated in an analysis of childhood malnutrition in Zambia.