2 resultados para Hierarchical multi-label classification

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Professor Sir David R. Cox (DRC) is widely acknowledged as among the most important scientists of the second half of the twentieth century. He inherited the mantle of statistical science from Pearson and Fisher, advanced their ideas, and translated statistical theory into practice so as to forever change the application of statistics in many fields, but especially biology and medicine. The logistic and proportional hazards models he substantially developed, are arguably among the most influential biostatistical methods in current practice. This paper looks forward over the period from DRC's 80th to 90th birthdays, to speculate about the future of biostatistics, drawing lessons from DRC's contributions along the way. We consider "Cox's model" of biostatistics, an approach to statistical science that: formulates scientific questions or quantities in terms of parameters gamma in probability models f(y; gamma) that represent in a parsimonious fashion, the underlying scientific mechanisms (Cox, 1997); partition the parameters gamma = theta, eta into a subset of interest theta and other "nuisance parameters" eta necessary to complete the probability distribution (Cox and Hinkley, 1974); develops methods of inference about the scientific quantities that depend as little as possible upon the nuisance parameters (Barndorff-Nielsen and Cox, 1989); and thinks critically about the appropriate conditional distribution on which to base infrences. We briefly review exciting biomedical and public health challenges that are capable of driving statistical developments in the next decade. We discuss the statistical models and model-based inferences central to the CM approach, contrasting them with computationally-intensive strategies for prediction and inference advocated by Breiman and others (e.g. Breiman, 2001) and to more traditional design-based methods of inference (Fisher, 1935). We discuss the hierarchical (multi-level) model as an example of the future challanges and opportunities for model-based inference. We then consider the role of conditional inference, a second key element of the CM. Recent examples from genetics are used to illustrate these ideas. Finally, the paper examines causal inference and statistical computing, two other topics we believe will be central to biostatistics research and practice in the coming decade. Throughout the paper, we attempt to indicate how DRC's work and the "Cox Model" have set a standard of excellence to which all can aspire in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-site time series studies of air pollution and mortality and morbidity have figured prominently in the literature as comprehensive approaches for estimating acute effects of air pollution on health. Hierarchical models are generally used to combine site-specific information and estimate pooled air pollution effects taking into account both within-site statistical uncertainty, and across-site heterogeneity. Within a site, characteristics of time series data of air pollution and health (small pollution effects, missing data, highly correlated predictors, non linear confounding etc.) make modelling all sources of uncertainty challenging. One potential consequence is underestimation of the statistical variance of the site-specific effects to be combined. In this paper we investigate the impact of variance underestimation on the pooled relative rate estimate. We focus on two-stage normal-normal hierarchical models and on under- estimation of the statistical variance at the first stage. By mathematical considerations and simulation studies, we found that variance underestimation does not affect the pooled estimate substantially. However, some sensitivity of the pooled estimate to variance underestimation is observed when the number of sites is small and underestimation is severe. These simulation results are applicable to any two-stage normal-normal hierarchical model for combining information of site-specific results, and they can be easily extended to more general hierarchical formulations. We also examined the impact of variance underestimation on the national average relative rate estimate from the National Morbidity Mortality Air Pollution Study and we found that variance underestimation as much as 40% has little effect on the national average.