5 resultados para Hazard-Based Models

em Collection Of Biostatistics Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many seemingly disparate approaches for marginal modeling have been developed in recent years. We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the proposed copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Jewell and Kalbfleisch (1992) consider the use of marker processes for applications related to estimation of the survival distribution of time to failure. Marker processes were assumed to be stochastic processes that, at a given point in time, provide information about the current hazard and consequently on the remaining time to failure. Particular attention was paid to calculations based on a simple additive model for the relationship between the hazard function at time t and the history of the marker process up until time t. Specific applications to the analysis of AIDS data included the use of markers as surrogate responses for onset of AIDS with censored data and as predictors of the time elapsed since infection in prevalent individuals. Here we review recent work on the use of marker data to tackle these kinds of problems with AIDS data. The Poisson marker process with an additive model, introduced in Jewell and Kalbfleisch (1992) may be a useful "test" example for comparison of various procedures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a new method for fitting proportional hazards models with error-prone covariates. Regression coefficients are estimated by solving an estimating equation that is the average of the partial likelihood scores based on imputed true covariates. For the purpose of imputation, a linear spline model is assumed on the baseline hazard. We discuss consistency and asymptotic normality of the resulting estimators, and propose a stochastic approximation scheme to obtain the estimates. The algorithm is easy to implement, and reduces to the ordinary Cox partial likelihood approach when the measurement error has a degenerative distribution. Simulations indicate high efficiency and robustness. We consider the special case where error-prone replicates are available on the unobserved true covariates. As expected, increasing the number of replicate for the unobserved covariates increases efficiency and reduces bias. We illustrate the practical utility of the proposed method with an Eastern Cooperative Oncology Group clinical trial where a genetic marker, c-myc expression level, is subject to measurement error.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High density oligonucleotide expression arrays are a widely used tool for the measurement of gene expression on a large scale. Affymetrix GeneChip arrays appear to dominate this market. These arrays use short oligonucleotides to probe for genes in an RNA sample. Due to optical noise, non-specific hybridization, probe-specific effects, and measurement error, ad-hoc measures of expression, that summarize probe intensities, can lead to imprecise and inaccurate results. Various researchers have demonstrated that expression measures based on simple statistical models can provide great improvements over the ad-hoc procedure offered by Affymetrix. Recently, physical models based on molecular hybridization theory, have been proposed as useful tools for prediction of, for example, non-specific hybridization. These physical models show great potential in terms of improving existing expression measures. In this paper we demonstrate that the system producing the measured intensities is too complex to be fully described with these relatively simple physical models and we propose empirically motivated stochastic models that compliment the above mentioned molecular hybridization theory to provide a comprehensive description of the data. We discuss how the proposed model can be used to obtain improved measures of expression useful for the data analysts.