6 resultados para Halbach array

em Collection Of Biostatistics Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: Array CGH technologies enable the simultaneous measurement of DNA copy number for thousands of sites on a genome. We developed the circular binary segmentation (CBS) algorithm to divide the genome into regions of equal copy number (Olshen {\it et~al}, 2004). The algorithm tests for change-points using a maximal $t$-statistic with a permutation reference distribution to obtain the corresponding $p$-value. The number of computations required for the maximal test statistic is $O(N^2),$ where $N$ is the number of markers. This makes the full permutation approach computationally prohibitive for the newer arrays that contain tens of thousands markers and highlights the need for a faster. algorithm. Results: We present a hybrid approach to obtain the $p$-value of the test statistic in linear time. We also introduce a rule for stopping early when there is strong evidence for the presence of a change. We show through simulations that the hybrid approach provides a substantial gain in speed with only a negligible loss in accuracy and that the stopping rule further increases speed. We also present the analysis of array CGH data from a breast cancer cell line to show the impact of the new approaches on the analysis of real data. Availability: An R (R Development Core Team, 2006) version of the CBS algorithm has been implemented in the ``DNAcopy'' package of the Bioconductor project (Gentleman {\it et~al}, 2004). The proposed hybrid method for the $p$-value is available in version 1.2.1 or higher and the stopping rule for declaring a change early is available in version 1.5.1 or higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic alterations have been linked to the development and progression of cancer. The technique of Comparative Genomic Hybridization (CGH) yields data consisting of fluorescence intensity ratios of test and reference DNA samples. The intensity ratios provide information about the number of copies in DNA. Practical issues such as the contamination of tumor cells in tissue specimens and normalization errors necessitate the use of statistics for learning about the genomic alterations from array-CGH data. As increasing amounts of array CGH data become available, there is a growing need for automated algorithms for characterizing genomic profiles. Specifically, there is a need for algorithms that can identify gains and losses in the number of copies based on statistical considerations, rather than merely detect trends in the data. We adopt a Bayesian approach, relying on the hidden Markov model to account for the inherent dependence in the intensity ratios. Posterior inferences are made about gains and losses in copy number. Localized amplifications (associated with oncogene mutations) and deletions (associated with mutations of tumor suppressors) are identified using posterior probabilities. Global trends such as extended regions of altered copy number are detected. Since the posterior distribution is analytically intractable, we implement a Metropolis-within-Gibbs algorithm for efficient simulation-based inference. Publicly available data on pancreatic adenocarcinoma, glioblastoma multiforme and breast cancer are analyzed, and comparisons are made with some widely-used algorithms to illustrate the reliability and success of the technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA sequence copy number has been shown to be associated with cancer development and progression. Array-based Comparative Genomic Hybridization (aCGH) is a recent development that seeks to identify the copy number ratio at large numbers of markers across the genome. Due to experimental and biological variations across chromosomes and across hybridizations, current methods are limited to analyses of single chromosomes. We propose a more powerful approach that borrows strength across chromosomes and across hybridizations. We assume a Gaussian mixture model, with a hidden Markov dependence structure, and with random effects to allow for intertumoral variation, as well as intratumoral clonal variation. For ease of computation, we base estimation on a pseudolikelihood function. The method produces quantitative assessments of the likelihood of genetic alterations at each clone, along with a graphical display for simple visual interpretation. We assess the characteristics of the method through simulation studies and through analysis of a brain tumor aCGH data set. We show that the pseudolikelihood approach is superior to existing methods both in detecting small regions of copy number alteration and in accurately classifying regions of change when intratumoral clonal variation is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most microarray technologies, a number of critical steps are required to convert raw intensity measurements into the data relied upon by data analysts, biologists and clinicians. These data manipulations, referred to as preprocessing, can influence the quality of the ultimate measurements. In the last few years, the high-throughput measurement of gene expression is the most popular application of microarray technology. For this application, various groups have demonstrated that the use of modern statistical methodology can substantially improve accuracy and precision of gene expression measurements, relative to ad-hoc procedures introduced by designers and manufacturers of the technology. Currently, other applications of microarrays are becoming more and more popular. In this paper we describe a preprocessing methodology for a technology designed for the identification of DNA sequence variants in specific genes or regions of the human genome that are associated with phenotypes of interest such as disease. In particular we describe methodology useful for preprocessing Affymetrix SNP chips and obtaining genotype calls with the preprocessed data. We demonstrate how our procedure improves existing approaches using data from three relatively large studies including one in which large number independent calls are available. Software implementing these ideas are avialble from the Bioconductor oligo package.