2 resultados para Graph matching
em Collection Of Biostatistics Research Archive
Resumo:
In a matched experimental design, the effectiveness of matching in reducing bias and increasing power depends on the strength of the association between the matching variable and the outcome of interest. In particular, in the design of a community health intervention trial, the effectiveness of a matched design, where communities are matched according to some community characteristic, depends on the strength of the correlation between the matching characteristic and the change in the health behavior being measured. We attempt to estimate the correlation between community characteristics and changes in health behaviors in four datasets from community intervention trials and observational studies. Community characteristics that are highly correlated with changes in health behaviors would potentially be effective matching variables in studies of health intervention programs designed to change those behaviors. Among the community characteristics considered, the urban-rural character of the community was the most highly correlated with changes in health behaviors. The correlations between Per Capita Income, Percent Low Income & Percent aged over 65 and changes in health behaviors were marginally statistically significant (p < 0.08).
Resumo:
The last few years have seen the advent of high-throughput technologies to analyze various properties of the transcriptome and proteome of several organisms. The congruency of these different data sources, or lack thereof, can shed light on the mechanisms that govern cellular function. A central challenge for bioinformatics research is to develop a unified framework for combining the multiple sources of functional genomics information and testing associations between them, thus obtaining a robust and integrated view of the underlying biology. We present a graph theoretic approach to test the significance of the association between multiple disparate sources of functional genomics data by proposing two statistical tests, namely edge permutation and node label permutation tests. We demonstrate the use of the proposed tests by finding significant association between a Gene Ontology-derived "predictome" and data obtained from mRNA expression and phenotypic experiments for Saccharomyces cerevisiae. Moreover, we employ the graph theoretic framework to recast a surprising discrepancy presented in Giaever et al. (2002) between gene expression and knockout phenotype, using expression data from a different set of experiments.