4 resultados para Genetic Linkage Mapping

em Collection Of Biostatistics Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The affected sib/relative pair (ASP/ARP) design is often used with covariates to find genes that can cause a disease in pathways other than through those covariates. However, such "covariates" can themselves have genetic determinants, and the validity of existing methods has so far only been argued under implicit assumptions. We propose an explicit causal formulation of the problem using potential outcomes and principal stratification. The general role of this formulation is to identify and separate the meaning of the different assumptions that can provide valid causal inference in linkage analysis. This separation helps to (a) develop better methods under explicit assumptions, and (b) show the different ways in which these assumptions can fail, which is necessary for developing further specific designs to test these assumptions and confirm or improve the inference. Using this formulation in the specific problem above, we show that, when the "covariate" (e.g., addiction to smoking) also has genetic determinants, then existing methods, including those previously thought as valid, can declare linkage between the disease and marker loci even when no such linkage exists. We also introduce design strategies to address the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important aspect of the QTL mapping problem is the treatment of missing genotype data. If complete genotype data were available, QTL mapping would reduce to the problem of model selection in linear regression. However, in the consideration of loci in the intervals between the available genetic markers, genotype data is inherently missing. Even at the typed genetic markers, genotype data is seldom complete, as a result of failures in the genotyping assays or for the sake of economy (for example, in the case of selective genotyping, where only individuals with extreme phenotypes are genotyped). We discuss the use of algorithms developed for hidden Markov models (HMMs) to deal with the missing genotype data problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are numerous statistical methods for quantitative trait linkage analysis in human studies. An ideal such method would have high power to detect genetic loci contributing to the trait, would be robust to non-normality in the phenotype distribution, would be appropriate for general pedigrees, would allow the incorporation of environmental covariates, and would be appropriate in the presence of selective sampling. We recently described a general framework for quantitative trait linkage analysis, based on generalized estimating equations, for which many current methods are special cases. This procedure is appropriate for general pedigrees and easily accommodates environmental covariates. In this paper, we use computer simulations to investigate the power robustness of a variety of linkage test statistics built upon our general framework. We also propose two novel test statistics that take account of higher moments of the phenotype distribution, in order to accommodate non-normality. These new linkage tests are shown to have high power and to be robust to non-normality. While we have not yet examined the performance of our procedures in the context of selective sampling via computer simulations, the proposed tests satisfy all of the other qualities of an ideal quantitative trait linkage analysis method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The etiology of complex diseases is heterogeneous. The presence of risk alleles in one or more genetic loci affects the function of a variety of intermediate biological pathways, resulting in the overt expression of disease. Hence, there is an increasing focus on identifying the genetic basis of disease by sytematically studying phenotypic traits pertaining to the underlying biological functions. In this paper we focus on identifying genetic loci linked to quantitative phenotypic traits in experimental crosses. Such genetic mapping methods often use a one stage design by genotyping all the markers of interest on the available subjects. A genome scan based on single locus or multi-locus models is used to identify the putative loci. Since the number of quantitative trait loci (QTLs) is very likely to be small relative to the number of markers genotyped, a one-stage selective genotyping approach is commonly used to reduce the genotyping burden, whereby markers are genotyped solely on individuals with extreme trait values. This approach is powerful in the presence of a single quantitative trait locus (QTL) but may result in substantial loss of information in the presence of multiple QTLs. Here we investigate the efficiency of sequential two stage designs to identify QTLs in experimental populations. Our investigations for backcross and F2 crosses suggest that genotyping all the markers on 60% of the subjects in Stage 1 and genotyping the chromosomes significant at 20% level using additional subjects in Stage 2 and testing using all the subjects provides an efficient approach to identify the QTLs and utilizes only 70% of the genotyping burden relative to a one stage design, regardless of the heritability and genotyping density. Complex traits are a consequence of multiple QTLs conferring main effects as well as epistatic interactions. We propose a two-stage analytic approach where a single-locus genome scan is conducted in Stage 1 to identify promising chromosomes, and interactions are examined using the loci on these chromosomes in Stage 2. We examine settings under which the two-stage analytic approach provides sufficient power to detect the putative QTLs.