2 resultados para Gene Doping, Performance-Enhancement, Pragmatic Ethics
em Collection Of Biostatistics Research Archive
Resumo:
The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTLs) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTLs are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the non-parametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals are poorly behaved and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately.
Resumo:
Among the many applications of microarray technology, one of the most popular is the identification of genes that are differentially expressed in two conditions. A common statistical approach is to quantify the interest of each gene with a p-value, adjust these p-values for multiple comparisons, chose an appropriate cut-off, and create a list of candidate genes. This approach has been criticized for ignoring biological knowledge regarding how genes work together. Recently a series of methods, that do incorporate biological knowledge, have been proposed. However, many of these methods seem overly complicated. Furthermore, the most popular method, Gene Set Enrichment Analysis (GSEA), is based on a statistical test known for its lack of sensitivity. In this paper we compare the performance of a simple alternative to GSEA.We find that this simple solution clearly outperforms GSEA.We demonstrate this with eight different microarray datasets.