4 resultados para Futures Studies methods
em Collection Of Biostatistics Research Archive
Resumo:
Goal: The Halex is an indicator of health status that combines self-rated health and activity limitations, which has been used by NCHS to predict future years of healthy life. The scores for each health state were developed based on strong assumptions, notably that a person in excellent health with ADL disabilities is as healthy as a person in poor health with no disabilities. Our goal was to examine the performance of the Halex as a longitudinal measure of health for older adults, and to improve the scoring if necessary. Methods: We used data from the Cardiovascular Health Study (CHS) to compare the relationship of baseline health to health 2 years later. Subject ages ranged from 65 to 103 (mean age 75). A total of 40,827 transitions were available for analysis. We examined whether Halex scores at time 0 were related monotonically to scores two years later, and iterated the original scores to improve the fit over time. Findings: The original Halex scores were not consistent over time. Persons in excellent health with ADL limitations were much healthier 2 years later than people in poor health with no limitations, even though they had been assumed to have identical health. People with ADL limitations had higher scores than predicted. The assumptions made in creating the Halex were not upheld in the data. Conclusions: The new iterated scores are specific to older adults, are appropriate for longitudinal data, and are relatively assumption-free. We recommend the use of these new scores for longitudinal studies of older adults that use the Halex health states.
Resumo:
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Since mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left truncated and right censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. Firstly, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.
Resumo:
Use of microarray technology often leads to high-dimensional and low- sample size data settings. Over the past several years, a variety of novel approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptation of the elastic net approach is presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time (AFT) model. Assessment of the two methods is conducted through simulation studies and through analysis of microarray data obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable selection method. The methods are moreover shown to be much more computationally efficient than their respective Cox- and AFT- based counterparts.
Resumo:
The ability to evaluate effects of factors on outcomes is increasingly important for a class of studies that control some but not all of the factors. Although important advances have been made in methods of analysis for such partially controlled studies,work on designs for such studies has been relatively limited. To help understand why, we review main designs that have been used for such partially controlled studies. Based on the review, we give two complementary reasons that explain the limited work on such designs, and suggest a new direction in this area.