4 resultados para Functional lung imaging
em Collection Of Biostatistics Research Archive
Resumo:
We establish a fundamental equivalence between singular value decomposition (SVD) and functional principal components analysis (FPCA) models. The constructive relationship allows to deploy the numerical efficiency of SVD to fully estimate the components of FPCA, even for extremely high-dimensional functional objects, such as brain images. As an example, a functional mixed effect model is fitted to high-resolution morphometric (RAVENS) images. The main directions of morphometric variation in brain volumes are identified and discussed.
Resumo:
In this manuscript we are concerned with functional imaging of the colon to assess the kinetics of a microbicide lubricant. The overarching goal is to understand the distribution of the lubricant in the colon. Such information is crucial for understanding the potential impact of the microbicide on HIV viral transmission. The experiment was conducted by imaging a radiolabeled lubricant distributed in the subject’s colon. The tracer imaging was conducted via single photon emission computed tomography (SPECT), a non-invasive, in-vivo functional imaging technique. We develop a novel principal curve algorithm to construct a three dimensional curve through the colon images. The developed algorithm is tested and debugged on several difficult two dimensional images of familiar curves where the original principal curve algorithm does not apply. The final curve fit to the colon data is compared with experimental sigmoidoscope collection.
Resumo:
We develop fast fitting methods for generalized functional linear models. An undersmooth of the functional predictor is obtained by projecting on a large number of smooth eigenvectors and the coefficient function is estimated using penalized spline regression. Our method can be applied to many functional data designs including functions measured with and without error, sparsely or densely sampled. The methods also extend to the case of multiple functional predictors or functional predictors with a natural multilevel structure. Our approach can be implemented using standard mixed effects software and is computationally fast. Our methodology is motivated by a diffusion tensor imaging (DTI) study. The aim of this study is to analyze differences between various cerebral white matter tract property measurements of multiple sclerosis (MS) patients and controls. While the statistical developments proposed here were motivated by the DTI study, the methodology is designed and presented in generality and is applicable to many other areas of scientific research. An online appendix provides R implementations of all simulations.
Resumo:
We are concerned with the estimation of the exterior surface of tube-shaped anatomical structures. This interest is motivated by two distinct scientific goals, one dealing with the distribution of HIV microbicide in the colon and the other with measuring degradation in white-matter tracts in the brain. Our problem is posed as the estimation of the support of a distribution in three dimensions from a sample from that distribution, possibly measured with error. We propose a novel tube-fitting algorithm to construct such estimators. Further, we conduct a simulation study to aid in the choice of a key parameter of the algorithm, and we test our algorithm with validation study tailored to the motivating data sets. Finally, we apply the tube-fitting algorithm to a colon image produced by single photon emission computed tomography (SPECT)and to a white-matter tract image produced using diffusion tensor `imaging (DTI).