26 resultados para Fullbright Scholar

em Collection Of Biostatistics Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter, the impact of watershed acidification treatments on WS3 at the Fernow Experimental Forest (FEF) and at WS9 on vegetation is presented and summarized in a comprehensive way for the first time. WS7 is used as a vegetative reference basin for WS3, while untreated plots within WS9 are used as a vegetative reference for WS9. Bioindicators of acidification impacts that will be considered include several measures of tree and stand growth rates, foliar chemistry, bolewood chemistry, and herbaceous species composition and diversity. These studies enhance our understanding of the inter-relationships of changes in soil conditions caused by the acidification treatment and the condition of forest vegetation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the conclusions reached during the Congressionally mandated National Acid Precipitation Program (NAPAP) was that, compared to ozone and other stress factors, the direct effects of acidic deposition on forest health and productivity were likely to be relatively minor. However, the report also concluded “the possibility of long-term (several decades) adverse effects on some soils appears realistic” (Barnard et al. 1990). Possible mechanisms for these long-term effects include: (1) accelerated leaching of base cations from soils and foliage, (2) increased mobilization of aluminum (Al) and other metals such as manganese (Mn), (3) inhibition of soil biological processes, including organic matter decomposition, and (4) increased bioavailability of nitrogen (N).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge. The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This broad range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees. The critical loads approach is an ecosystem assessment tool with great potential to simplify complex scientii c information and effectively communicate with the policy community and the public. This synthesis represents the i rst comprehensive assessment of empirical critical loads of N for ecoregions across the United States.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Additions of acid anions can alter the cycling of other nutrients and elements within an ecosystem. As strong acid ions move through a forest, they may increase the concentrations of nitrogen (N) and sulfur (S) in the soil solution and stream water. Such treatments also may increase or decrease the availability of other anions, cations and metal ions in the soil. A number of studies in Europe and North America have documented increases in base cation concentrations such as calcium (Ca) and magnesium (Mg) with increased N and S deposition (Foster and Nicolson 1988, Feger 1992, Norton et al. 1994, Adams et al. 1997, Currie et al. 1999, Fernandez et al. 2003). Experiments in Europe also have evaluated the response of forested watersheds to decreased deposition (Tietema et al. 1998, Lamersdorf and Borken 2004). In this chapter, we evaluate the effects of the watershed acidification treatment on the cycling of N, S, Ca, Mg and potassium (K) on Fernow WS3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied temporal and spatial patterns of soil nitrogen (N) dynamics from 1993 to 1995 in three watersheds of Fernow Experimental Forest, W.V.: WS7 (24-year-old, untreated); WS4 (mature, untreated); and WS3 (24-year-old, treated with (NH4)2SO since 1989 at the rate of 35 kg Nha–1year–1). Net nitrification was 141, 114, and115 kg Nha–1year–1, for WS3, WS4, and WS7, respectively, essentially 100% of net N mineralization for all watersheds. Temporal (seasonal) patterns of nitrification were significantly related to soil moisture and ambient temperaturein untreated watersheds only. Spatial patterns of soil water NO3–of WS4 suggest that microenvironmental variabilitylimits rates of N processing in some areas of this N-saturated watershed, in part by ericaceous species in the herbaceous layer. Spatial patterns of soil water NO3–in treated WS3 suggest that later stages of N saturation may result inhigher concentrations with less spatial variability. Spatial variability in soil N variables was lower in treated WS3 versus untreated watersheds. Nitrogen additions have altered the response of N-processing microbes to environmental factors, becoming less sensitive to seasonal changes in soil moisture and temperature. Biotic processes responsible forregulating N dynamics may be compromised in N-saturated forest ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Additions of nitrogen (N) have been shown to alter species diversity of plant communities, with most experimental studies having been carried out in communities dominated by herbaceous species. We examined seasonal and inter-annual patterns of change in the herbaceous layer of two watersheds of a central Appalachian hardwood forest that differed in experimental treatment. This study was carried out at the Fernow Experimental Forest, West Virginia, using two adjacent watersheds: WS4 (mature, second-growth hardwood stand, untreated reference), and WS3. Seven circular 0.04-ha sample plots were established in eachwatershed to represent its full range of elevation and slope aspect. The herbaceous layer was sampled by identifying and visually estimating cover (%) of all vascular plants. Sampling was carried out in mid-July of 1991 and repeated at approximately the same time in 1992. In 1994, these same plots were sampled each month fromMay to October. Seasonal patterns of herb layer dynamics were assessed for the complete 1994 data set, whereasinter-annual variability was based on plot data from 1991, 1992, and the July sample of 1994. There were nosignificant differences between watersheds for any sample year for any of the other herb layer characteristics measured, including herb layer cover, species richness, evenness, and diversity. Cover on WS4 decreased significantly from 1991 to 1992, followed by no change to 1994. By contrast, herb layer cover did not varysignificantly across years on WS3. Cover of the herbaceous layer of both watersheds increased from early in the growing season to the middle of the growing season, decreasing thereafter, with no significant differencesbetween WS3 and WS4 for any of the monthly cover means in 1994. Similar seasonal patterns found for herblayer cover—and lack of significant differences between watersheds—were also evident for species diversityand richness. By contrast, there was little seasonal change in herb layer species evenness, which was nearlyidentical between watersheds for all months except October. Seasonal patterns for individual species/speciesgroups were closely similar between watersheds, especially for Viola rotundifolia and Viola spp. Species richnessand species diversity were linearly related to herb layer cover for both WS3 and WS4, suggesting that spatialand temporal increases in cover were more related to recruitment of herb layer species than to growth of existingspecies. Results of this study indicate that there have been negligible responses of the herb layer to 6 yr of additions to WS3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of Nsaturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturatedsoils from FEF, and how these effects varied between high N-processing vs. low N-processingsoils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O2 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest ratesof net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin,and N. Subsamples of mineral soil were extractedimmediately with 1 N KCl and analyzed for NH4+and NO3– to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence ofnitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and30°C), followed by 1 N KCl extraction and analysis for NH4+ and NO3–. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubation sat all temperatures supported earlier observations based on field incubations. At 30°C, rates from N- t reated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibitingno net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca:Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clearcutting is a common harvesting practice in many eastern hardwood forests. Among the vegetation strata of these forests, the herbaceous layer is potentially the most sensitive in its response to harvest-mediated disturbances and has the highest species diversity. Thus, it is important to understand the response of herbaceous layer diversity to forest harvesting. Previous work on clearcut and mature stands at the Fernow Experimental Forest (FEF), West Virginia, has shown that, although, harvesting did not alter appreciably herbaceous layer cover, it influenced the relationship of cover to biotic and abiotic factors, such as tree density and soil nutrients, respectively. The purpose of this study was to examine the response of species diversity of the herbaceous layer to harvesting at FEF. Fifteen circular, 0.04 ha sample plots were established in each of four watersheds (60 plots in total) representing two stand age categories: two watersheds with 20 years even-age stands following clearcutting and two watersheds with mature second growth stands. All woody stems ≥2.5 cm diameter at breast height were identified, tallied, and measured for diameter. The herbaceous layer was sampled by identifying all vascular plants ≤1 m in height and estimating cover for each species in each of 10 (1 m2) circular sub-plots per sample plot (600 sub-plots total). Species diversity for each plot was calculated from herbaceous layer data using the ln-based Shannon Index (H′) equation. Ten stand and soil variables also were measured on each plot. Mean herbaceous layer cover for clearcut versus mature stands was 27.2±14.3% versus 20.2±8.1% (P>0.05), respectively and mean H′ was 1.67±0.42 versus 1.55±0.48 (P>0.05), respectively. Herbaceous layer diversity was negatively correlated with cation exchange capacity and extractable Ca and Mg in the mineral soil in clearcut stands. In contrast, herbaceous layer diversity was positively correlated with soil organic matter and clay content. Although, 20 years of recovery after clearcutting did not have significant effects on the species diversity of the herbaceous layer when examining stand age means alone, harvesting did appear to influence the spatial relationships between herbaceous layer diversity and biotic factors (e.g. tree density) and abiotic factors (e.g. soil nutrients).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silvicultural treatments represent disturbances to forest ecosystems often resulting in transient increases in net nitrification and leaching of nitrate and base cations from the soil. Response of soil carbon (C) is more complex, decreasing from enhanced soil respiration and increasing from enhanced postharvest inputs of detritus. Because nitrogen (N) saturation can have similar effects on cation mobility, timber harvesting in N-saturated forests may contribute to a decline in both soil C and base cation fertility, decreasing tree growth. Although studies have addressed effects of either forest harvesting or N saturation separately, few data exist on their combined effects. Our study examined the responses of soil C and N to several commercially used silvicultural treatments within the Fernow Experimental Forest, West Virginia, USA, a site with N-saturated soils. Soil analyses included soil organic matter (SOM), C, N, C/N ratios, pH, and net nitrification. We hypothesized the following gradient of disturbance intensity among silvicultural practices (from most to least intense): even-age with intensive harvesting (EA-I), even-age with extensive harvesting, even-age with commercial harvesting, diameter limit, and single-tree harvesting (ST). We anticipated that effects on soil C and N would be greatest for EA-I and least with ST. Tree species exhibited a response to the gradient of disturbance intensity, with early successional species more predominant in high-intensity treatments and late successional species more predominant in low-intensity treatments. Results for soil variables, however, generally did not support our predictions, with few significant differences among treatments and between treatments and their paired controls for any of the measured soil variables. Multiple regression indicated that the best predictors for net nitrification among samples were SOM (positive relationship) and pH (negative relationship). This finding confirms the challenge of sustainable management of N-saturated forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent interest in spatial pattern in terrestrial ecosystems has come from an awareness of theintimate relationship between spatial heterogeneity of soil resources and maintenance of plant species diversity. Soil and vegetation can vary spatially inresponse to several state factors of the system. In this study, we examined fine-scale spatial variability of soil nutrients and vascular plant species in contrasting herb-dominated communities (a pasture and an oldfield) to determine degree of spatial dependenceamong soil variables and plant community characteristics within these communities by sampling at 1-m intervals. Each site was divided into 25 1-m 2 plots. Mineral soil was sampled (2-cm diameter, 5-cm depth) from each of four 0.25-m2 quarters and combined into a single composite sample per plot. Soil organic matter was measured as loss-on-ignition. Extractable NH4 and NO3 were determined before and after laboratory incubation to determine potential net N mineralization and nitrification. Cations were analyzed using inductively coupled plasma emission spectrometry. Vegetation was assessed using estimated percent cover. Most soiland plant variables exhibited sharp contrasts betweenpasture and old-field sites, with the old field having significantly higher net N mineralization/nitrification, pH, Ca, Mg, Al, plant cover, and species diversity, richness, and evenness. Multiple regressions revealedthat all plant variables (species diversity, richness,evenness, and cover) were significantly related to soil characteristics (available nitrogen, organic matter,moisture, pH, Ca, and Mg) in the pasture; in the old field only cover was significantly related to soil characteristics (organic matter and moisture). Both sites contrasted sharply with respect to spatial pattern of soil variables, with the old field exhibiting a higher degree of spatial dependence. These results demonstrate that land-use practices can exert profound influence on spatial heterogeneity of both soil properties and vegetation in herb-dominated communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined effects of soil freezing on N dynamics in soil along an N processing gradient within a mixed hardwood dominated watershed at Fernow Experimental Forest, West Virginia. Sites were designated as LN (low rates of N processing), ML (moderately low), MH (moderately high), and HN (high). Soils underwent three 7-day freezing treatments (0, –20, or –80 °C) in the laboratory. Responses varied between temperature treatments and along the gradient. Initial effects differed among freezing treatments for net N mineralization, but not nitrification, in soils across the gradient, generally maintained at LN < ML ≤ MH < HN for all treatments. Net N mineralization potential was higher following freezing at –20 and –80 °C than control; all were higher than at 0 °C. Net nitrification potential exhibited similar patterns. LN was an exception, with net nitrification low regardless of treatment. Freezing response of N mineralization differed greatly from that of nitrification, suggesting that soil freezing may decouple two processes of the soil N cycle that are otherwise tightly linked at our site. Results also suggest that soil freezing at temperatures commonly experienced at this site can further increase net nitrification in soils already exhibiting high nitrification from N saturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite a growing awareness that the herbaceous layer serves a special role in maintaining the structure and function of forests, this stratum remainsan underappreciated aspect of forest ecosystems. In this article I review and synthesize information concerning the herb layer’s structure,composition, and dynamics to emphasize its role as an integral component of forest ecosystems. Because species diversity is highest in the herb layeramong all forest strata, forest biodiversity is largely a function of the herb-layer community. Competitive interactions within the herb layer candetermine the initial success of plants occupying higher strata, including the regeneration of dominant overstory tree species. Furthermore, the herblayer and the overstory can become linked through parallel responses to similar environmental gradients. These relationships between strata varyboth spatially and temporally. Because the herb layer responds sensitively to disturbance across broad spatial and temporal scales, its dynamics canprovide important information regarding the site characteristics of forests, including patterns of past land-use practices. Thus, the herb layer has asignificance that belies its diminutive stature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of soil freezing on nitrogen (N) mineralization have been the subject of increased attention in the ecological literature, though fewer studies have examined N mineralization responses to successive mild freezing, severe freezing and cyclic freeze–thaw events. Even less is known about relationships of responses to soil N status. This study measured soil N mineralization and nitrification in the field along an experimental N gradient in a grassland of northern China during the dormant season (October 2005–April 2006), a period in which freezing naturally occurs. Net N mineralization exhibited great temporal variability, with nitrification being the predominant N transformation process. Soil microbial biomass C and N and extractable NH4 + pools declined by 40, 52, and 56%, respectively, in April 2006, compared with their initial concentrations in October 2005; soil NO3– pools increased by 84%. Temporal patterns of N mineralization were correlated with soil microbial biomass C and N. N mineralization and nitrification increased linearly with added N. Microbial biomass C in treated soils increased by 10% relative to controls, whereas microbial N declined by 9%. Results further suggest that freezing events greatly alter soil N dynamics in the dormant season at this site, with considerable available N accumulating during this period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Response of plant biodiversity to increased availability of nitrogen (N) has been investigated in temperate and boreal forests, which are typically N-limited, but little is known in tropical forests. We examined the effects of artificial N additions on plant diversity (species richness, density and cover) of the understory layer in an N saturated old-growth tropical forest in southern China to test the following hypothesis: N additions decrease plant diversity in N saturated tropical forests primarily from N-mediated changes in soil properties. Experimental additions of N were administered at the following levels from July 2003 to July 2008: no addition (Control); 50 kg N ha−1 yr−1 (Low-N); 100 kg N ha−1 yr−1 (Medium-N), and 150 kg N ha−1 yr−1 (High-N). Results showed that no understory species exhibited positive growth response to any level of N addition during the study period. Although low-to-medium levels of N addition (≤100 kg N ha−1 yr−1) generally did not alter plant diversity through time, high levels of N addition significantly reduced species diversity. This decrease was most closely related to declines within tree seedling and fern functional groups, as well as to significant increases in soil acidity and Al mobility, and decreases in Ca availability and fine-root biomass. This mechanism for loss of biodiversity provides sharp contrast to competition-based mechanisms suggested in studies of understory communities in other forests. Our results suggest that high-N additions can decrease plant diversity in tropical forests, but that this response may vary with rate of N addition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teeth are brittle and highly susceptible to cracking. We propose that observations of such cracking can be used as a diagnostic tool for predicting bite force and inferring tooth function in living and fossil mammals. Laboratory tests on model tooth structures and extracted human teeth in simulated biting identify the principal fracture modes in enamel. Examination of museum specimens reveals the presence of similar fractures in a wide range of vertebrates, suggesting that cracks extended during ingestion or mastication. The use of ‘fracture mechanics’ from materials engineering provides elegant relations for quantifying critical bite forces in terms of characteristic tooth size and enamel thickness. The role of enamel microstructure in determining how cracks initiate and propagate within the enamel (and beyond) is discussed. The picture emerges of teeth as damage-tolerant structures, full of internal weaknesses and defects and yet able to contain the expansion of seemingly precarious cracks and fissures within the enamel shell. How the findings impact on dietary pressures forms an undercurrent of the study.