1 resultado para Full scale testing
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (5)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (17)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (25)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (3)
- Archive of European Integration (1)
- Aston University Research Archive (39)
- Biblioteca de Teses e Dissertações da USP (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (148)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (8)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (33)
- Central European University - Research Support Scheme (2)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (13)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (9)
- Digital Commons at Florida International University (21)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (6)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (32)
- DRUM (Digital Repository at the University of Maryland) (8)
- Duke University (1)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Glasgow Theses Service (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (10)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (35)
- Memorial University Research Repository (1)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (31)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (6)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (48)
- Universidade do Minho (11)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Université de Lausanne, Switzerland (35)
- Université de Montréal (3)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (2)
- University of Michigan (37)
- University of Queensland eSpace - Australia (180)
- University of Washington (4)
Resumo:
The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988-2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10 for the full time period and PM2.5 for a subset of the period. For the earlier part of the period, 1988-1998, few PM2.5 monitors were operating, so we develop a simple extension to the model that represents PM2.5 conditionally on PM10 model predictions. In the epidemiological analysis, model predictions of PM10 are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space-time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.