2 resultados para Fertility of soil

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent interest in spatial pattern in terrestrial ecosystems has come from an awareness of theintimate relationship between spatial heterogeneity of soil resources and maintenance of plant species diversity. Soil and vegetation can vary spatially inresponse to several state factors of the system. In this study, we examined fine-scale spatial variability of soil nutrients and vascular plant species in contrasting herb-dominated communities (a pasture and an oldfield) to determine degree of spatial dependenceamong soil variables and plant community characteristics within these communities by sampling at 1-m intervals. Each site was divided into 25 1-m 2 plots. Mineral soil was sampled (2-cm diameter, 5-cm depth) from each of four 0.25-m2 quarters and combined into a single composite sample per plot. Soil organic matter was measured as loss-on-ignition. Extractable NH4 and NO3 were determined before and after laboratory incubation to determine potential net N mineralization and nitrification. Cations were analyzed using inductively coupled plasma emission spectrometry. Vegetation was assessed using estimated percent cover. Most soiland plant variables exhibited sharp contrasts betweenpasture and old-field sites, with the old field having significantly higher net N mineralization/nitrification, pH, Ca, Mg, Al, plant cover, and species diversity, richness, and evenness. Multiple regressions revealedthat all plant variables (species diversity, richness,evenness, and cover) were significantly related to soil characteristics (available nitrogen, organic matter,moisture, pH, Ca, and Mg) in the pasture; in the old field only cover was significantly related to soil characteristics (organic matter and moisture). Both sites contrasted sharply with respect to spatial pattern of soil variables, with the old field exhibiting a higher degree of spatial dependence. These results demonstrate that land-use practices can exert profound influence on spatial heterogeneity of both soil properties and vegetation in herb-dominated communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silvicultural treatments represent disturbances to forest ecosystems often resulting in transient increases in net nitrification and leaching of nitrate and base cations from the soil. Response of soil carbon (C) is more complex, decreasing from enhanced soil respiration and increasing from enhanced postharvest inputs of detritus. Because nitrogen (N) saturation can have similar effects on cation mobility, timber harvesting in N-saturated forests may contribute to a decline in both soil C and base cation fertility, decreasing tree growth. Although studies have addressed effects of either forest harvesting or N saturation separately, few data exist on their combined effects. Our study examined the responses of soil C and N to several commercially used silvicultural treatments within the Fernow Experimental Forest, West Virginia, USA, a site with N-saturated soils. Soil analyses included soil organic matter (SOM), C, N, C/N ratios, pH, and net nitrification. We hypothesized the following gradient of disturbance intensity among silvicultural practices (from most to least intense): even-age with intensive harvesting (EA-I), even-age with extensive harvesting, even-age with commercial harvesting, diameter limit, and single-tree harvesting (ST). We anticipated that effects on soil C and N would be greatest for EA-I and least with ST. Tree species exhibited a response to the gradient of disturbance intensity, with early successional species more predominant in high-intensity treatments and late successional species more predominant in low-intensity treatments. Results for soil variables, however, generally did not support our predictions, with few significant differences among treatments and between treatments and their paired controls for any of the measured soil variables. Multiple regression indicated that the best predictors for net nitrification among samples were SOM (positive relationship) and pH (negative relationship). This finding confirms the challenge of sustainable management of N-saturated forests.