1 resultado para Fault severity
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (11)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (28)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (47)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (91)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (40)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (24)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (8)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (5)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (10)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (13)
- Nottingham eTheses (3)
- Publishing Network for Geoscientific & Environmental Data (67)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (81)
- Research Open Access Repository of the University of East London. (1)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (53)
- Scientific Open-access Literature Archive and Repository (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (24)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universitat de Girona, Spain (13)
- Université de Lausanne, Switzerland (69)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (3)
- University of Michigan (34)
- University of Queensland eSpace - Australia (106)
- University of Washington (4)
- WestminsterResearch - UK (1)
Resumo:
This paper presents a fully Bayesian approach that simultaneously combines basic event and statistically independent higher event-level failure data in fault tree quantification. Such higher-level data could correspond to train, sub-system or system failure events. The full Bayesian approach also allows the highest-level data that are usually available for existing facilities to be automatically propagated to lower levels. A simple example illustrates the proposed approach. The optimal allocation of resources for collecting additional data from a choice of different level events is also presented. The optimization is achieved using a genetic algorithm.