2 resultados para Face processing research
em Collection Of Biostatistics Research Archive
Resumo:
Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of Nsaturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturatedsoils from FEF, and how these effects varied between high N-processing vs. low N-processingsoils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O2 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest ratesof net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin,and N. Subsamples of mineral soil were extractedimmediately with 1 N KCl and analyzed for NH4+and NO3– to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence ofnitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and30°C), followed by 1 N KCl extraction and analysis for NH4+ and NO3–. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubation sat all temperatures supported earlier observations based on field incubations. At 30°C, rates from N- t reated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibitingno net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca:Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer.
Resumo:
A recent article in this journal (Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2: e124) argued that more than half of published research findings in the medical literature are false. In this commentary, we examine the structure of that argument, and show that it has three basic components: 1)An assumption that the prior probability of most hypotheses explored in medical research is below 50%. 2)Dichotomization of P-values at the 0.05 level and introduction of a “bias” factor (produced by significance-seeking), the combination of which severely weakens the evidence provided by every design. 3)Use of Bayes theorem to show that, in the face of weak evidence, hypotheses with low prior probabilities cannot have posterior probabilities over 50%. Thus, the claim is based on a priori assumptions that most tested hypotheses are likely to be false, and then the inferential model used makes it impossible for evidence from any study to overcome this handicap. We focus largely on step (2), explaining how the combination of dichotomization and “bias” dilutes experimental evidence, and showing how this dilution leads inevitably to the stated conclusion. We also demonstrate a fallacy in another important component of the argument –that papers in “hot” fields are more likely to produce false findings. We agree with the paper’s conclusions and recommendations that many medical research findings are less definitive than readers suspect, that P-values are widely misinterpreted, that bias of various forms is widespread, that multiple approaches are needed to prevent the literature from being systematically biased and the need for more data on the prevalence of false claims. But calculating the unreliability of the medical research literature, in whole or in part, requires more empirical evidence and different inferential models than were used. The claim that “most research findings are false for most research designs and for most fields” must be considered as yet unproven.